JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 3, June 1990

A Note on Basic Construction and Index for Subfactors

DEOK-HOON BOO

ABSTRACT. The converse of Pimsner-Popa theorem is proved, and represent the index [M:N] by finite sum of elements of M.

1. Introduction

Let M be a finite factor with normalized trace tr and $N \subset M$ a subfactor. In a recent paper [1], V.F.R. Jones considered the coupling constant of N in his representation on $L^{2}(M, tr)$ as an invariant for N up to conjugations by automorphisms of M. He call this invariant the index of N in M and denotes it [M:N] and also V.F.R. Jones shows that if M is a factor of type II_1 the index is more than 4 or take values $4\cos^2(\pi/n)$ for $n \ge 3$. If this index is finite then the trace preserving conditional expectations of M onto N, regarded as an operator on $L^2(M)$, generates together with M a finite factor M_1 this factor is called in Jones' terminology the extension of M by Nand the construction of M_1 from M and N the basic construction, the pair $M \subset M_1$ has the remarkable property that $[M_1: M] = [M: N]$. In [3], if $N \subset M$ are finite factors with $[M:N] < \infty$, M. Pimsner and S. Popa construct the Pimsner-Popa basis and using this represent elements of M. In this paper we consider some properties of a pair of factors of type II_1 with $[M:N] < \infty$ and the converse of the theorem [3] 1.3 in which Pimsner-Popa basis was constructed and representation of elements of M using Pimsner-Popa basis.

2. Basic construction and index for subfactors

Throughout this paper M will be a finite factor with the normalized trace tr. We denote $||x||_2 = tr(x^*x)^{1/2}$, $x \in M$, the Hilbert norm given by tr and denote $L^2(M, tr)$ the Hilbert space completion of M

Received by the editors on 21 June 1990.

¹⁹⁸⁰ Mathematics subject classifications: Primary 46L05.

DEOK-HOON BOO

in this norm. The canonical conjugation of $L^2(M, tr)$ is denoted by J. It acts on M and $L^2(M, tr)$ by $Jx = x^*$ and satisfies JMJ = M'.

Let $N \subset M$ will denote a subfactor of M with $1_M = 1_N$ and E_N be the unique normal trace preserving conditional expectation of M onto N. Then, in fact, E_N is just the restriction to $M \subset L^2(M, tr)$ of the orthogonal projection e_N of $L^2(M, tr)$ onto $L^2(N, tr)$, the closure of N in $L^2(M, tr)$. The conditional expectation E_N and the projection e_N and the conjugation J are related by the properties;

- 1) If $x \in M$ then $x \in N$ if and only if $e_N x = x e_N$
- 2) $e_N x e_N = E_N(x) e_N, x \in M$
- 3) J commutes with e_N

If M is a finite factor and acts on the Hilbert space H, the Murray and von Neumann coupling constant $\dim_N H$ is defined as $tr([M'\xi])/tr$. $([M\xi])$, where tr' be the canonical trace on M' and $0 \neq \xi \in H$ and for $A \subset B(H)$ $[A\xi]$ is the orthogonal projection onto the closed subspace generated by $A\xi$. It is shown in [4] that this definition is independent of $\xi \neq 0$. For a pair of finite factors $N \subset M$ V.F.R. Jones defined in [1] the index of N in M, [M:N], to be the number $\dim_N(H)/\dim_M(H)$ or equivalently $\dim_N L^2(M, tr)$. In particular [M:N] is a conjugacy invariant for N as a subfactor of M. In the case $N \subset M$ comes from the group construction in [2], for some I.C.C discrete groups $G_0 \subset G$ then [M:N] coincide with the index of G_0 in G. When M is the crossed product of N by some outer action of a discrete group K, $M = N \times K$, then [M:N] is just the cardinal of K. The index [M:N] has the following properties ([1]);

- 1. [M:N] = 1 if and only if M = N
- 2. $[M:N] \ge 1$
- 3. If $N \subset P \subset M$ then [M:P][P:N] = [M:N]
- 4. $[M:N] = \infty$ iff N' is of type II_{∞} iff M_1 is of type II_{∞}
- 5. If $[M:N] < \infty$ then M_1 is a finite factor and $[M_1:M] = [M:N]$

.,

In basic construction the extension M_1 of M by N is constructed as a factor acting on $L^2(M)$. In generally M_1 can not act on $L^2(N)$ but if [M:N] is finite then M_1 can act on $L^2(N)$.

THEOREM 1. Let $N \subset M$ be II_1 factors. If [M:N] is finite then there exists a faithful representation of M on $L^2(N)$.

PROOF: Since [M : N] is finite M' and N' are finite factors. In particular M is a II_1 factor acting on $L^2(M, tr)$. So there exists a projection p in M' such that $tr_{M'}(p) = [M:N]^{-1}$. Then N and M are *-isomorphic to the reduced von Neumann algebras N_p and M_p respectively. Now

$$\dim N_p(p(L^2(M,tr)) = tr_{N'}(p) \dim_N(L^2(M,tr)) = tr_{M'}(p)[M:N] = 1.$$

So N_P acts standardly on $p(L^2(M, tr))$. Now let $\pi : N \to B(L^2(M, tr))$ be the faithful representation of N, i.e. $\pi(x)$ act as left multiplication by x on $L^2(N, tr_N)$. Then $\pi(N)$ also acts standardly on $L^2(N, tr_N)$. So that N_P and $\pi(N)$ are spatially isomorphic. thus there exists a unitary operator u from $p(L^2(M, tr))$ to $L^2(N, tr_N)$ such that $\pi(x) =$ $ux_{p}u^{*}, x \in N$. Define $\phi(x) = ux_{p}u^{*}, x \in M$, then ϕ is a faithful representation of M on $L^2(N)$.

Let M be a factor of type II_1 and N a subfactor of M. If [M:N] is finite then there exists a Pimsner-Popa basis $\{m_1\}_{1 \le i \le n+1}$ of elements in M, with n equal to the integer part of [M : N], satisfying the properties;

a) $E(m_j^*m_k) = 0$ if $j \neq k$

b) $E(m_i^*m_j) = 1$ if $1 \le j \ne n$

c) $E(m_{n+1}^*m_{n+1})$ is a projection of trace [M:N] - n

Any such family satisfies ;

- d) $\sum m_j e_N m_j^* = 1$ e) $\sum m_j m_j^* = [M:N]$
- f) Every element m in M has a unique decomposition $m = \sum m_i y_i$ with $y_i \in N$, $y_{n+1} \in E_N(m_{n+1}^* m_{n+1})N$.

In $M_1 \{ \sum a_i e_N b_i : a_i, b_i \in M \}$ forms a dense subalgebra ([3] 1.2). Now we can find more explicite description of M_1 using Pimsner-Popa basis.

PROPOSITION 2. Let $N \subset M$ be factors of type II_1 and M_1 be the extension of M by N. Then $M_1 = \{\sum m_i a_i, m_j e_N m_j \mid a_{i,j} \in N\},\$ where n is the integer part of [M:N] and $\{m_i: 1 \le i \le n+1\}$ is the Pimsner-Popa basis of M over N.

91

DEOK-HOON BOO

PROOF: Let $x \in M_1$. By the property d) of Pimsner-Popa basis we have

$$x = \sum m_i e_N m_i^* x \sum m_j e_N m_j^* = \sum m_i e_N m_i^* x m_j e_N m_j^*.$$

By ([3] 1.2) there exists elements $a_{i,j}$ of M such that $m_i^* x m_j e_N = a_{i,j} e_N$. So

$$x = \sum m_i e_N a_{i,j} e_N m_j.$$

Since $e_N x e_N = E_N(x) e_N$ for all x in M by the properties of basic construction we have

$$x = \sum m_i E_N(a_{i,j}) e_N m_j^*.$$

Using Pimsner-Popa basis we can see that M is isomorphic as a right N-module with $N^n \oplus E_N(m_{n+1})^* m_{n+1} N$ ([3] 1.4). Now let $N \subset M_i$, i = 1, 2, be factors of type II_1 with $[M_1 : N] = [M_2 : N]$. We consider the question whether M_1 and M_2 are isomorphic each other as right N-modules.

PROPOSITION 3. Let $N \subset M_i$, i = 1, 2, be factors of type II_1 . If $[M_1:N] = [M_2:N]$ and this index is an integer then M_1 and M_2 are isomorphic as right N-modules.

PROOF: Let n = [M : N], $\{m_i : i = 1, ..., n\}$ and $\{m'_i : i = 1, ..., n\}$ be Pimsner-Popa basis for M_1 and M_2 over N respectively. Then by [3] any elements m of M_1 , m' of M_2 have unique representations as follows;

$$egin{aligned} m &= \sum m_i y_i, \qquad y_i \in N \ m' &= \sum m'_i y_i, \qquad y'_i \in N \end{aligned}$$

Define $\phi(\sum m_i y_i) = \sum m'_i y_i$, then $\phi: M_1 \to M_2$ is a surjective N module homomorphism. If $\sum m'_i y_i = 0$ then by uniqueness $y_i = 0$. Thus ϕ is a right N module isomorphism.

In ([3] 1.3) M. Pimsner and S. Popa construct the Pimsner-Popa basis and give some properties of the pair $N \subset M$ of factors with $[M:N] < \infty$. The converse of ([3] 1.3) will represent [M:N] using finite number of elements of M.

92

93

THEOREM 4. Let $N \subset M$ be factors of type II_1 with $[M:N] < \infty$. Suppose that there exists a finite set $\{m_i\}_{1 \leq j \leq n+1}$ of elements of M which satisfy the followings;

- a) $E_N(m_j^*m_k) = 0$ if $j \neq k$
- b) $E_N(m_i^*m_i) = 1$ if $1 \le j \le n$
- c) $E_N(m_{n+1}^*m_{n+1})$ is a projection of trace t
- d) $\sum m_j e_N m_j^* = 1$

then $[M:N] = \sum m_i m_i^* = n + t$ and $\{m_i\}$ is the Pimsner-Popa basis.

PROOF: Let M_1 be the extension of M by N and E_M be the trace preserving conditional expectation of M_1 onto M. Then $E_M(e_N) = [M:N]^{-1}I_M$ by ([1] 3.4.1). So we have

$$1 = E_M\left(\sum m_i e_N m_i^*\right) = \sum m_i m_i^* E_M(e_N)$$

thus $[M:N] = \sum m_i m_i^*$.

Let $p = E_N(m_{n+1}^*m_{n+1})$. Since tr is a $[M:N]^{-1}$ trace on M we have

$$tr(pe_N) = [M:N]^{-1}tr(p) = [M:N]^{-1}t.$$

So

$$tr\left(\sum E_N(m_i^*m_i)e_N\right) = (n+t)[M:N]^{-1}.$$

Now

$$tr(E_N(m_i^*m_i)e_N) = tr(e_Nm_i^*m_ie_N) = tr(m_ie_Nm_i^*),$$

so that

$$1 = tr\left(\sum m_i e_N m_i^*\right) = tr\left(\sum E_N(m_i^* m_i) e_N\right) = (n+t)[M:N]^{-1}.$$

By the proof of the previous theorem we can see that following corollary which represents index and elements of M.

COROLLARY. Let $N \subset M$ be II_1 factors. If there exists a finite subset $\{m_i\}$ of M such that $\sum m_i e_N m_i^* = 1$ then $[M:N] = \sum m_i m_i^*$

and every elements of M can be written by the form $\sum m_i y_i$ for some $y_i \in N$.

PROOF: By proof of theorem we have $[M : N] = \sum m_i^* m_i$. Let $m \in M$, then by the equation $e_N x e_N = E_N(x) e_N$ for all $x \in M$ we have

$$me_N = \sum m_i e_N m_i^* me_N = \sum m_i E_N(m_i^* m_i) e_N.$$

So that by ([3] 1.2) we have

$$m=\sum m_i E_N(m_i^*m_i)e_N.$$

REMARK: Let $N \subset M$ are II_1 factors with $[M:N] < \infty$. Choose a projection e in M with $tr(e) = [M:N]^{-1}$ and let $P = \{e\}' \cap N$ then P is a II_1 factor and M is an extension of N by P. V.F.R Jones said this process the downward basic construction ([3] 1.8). Let p be a projection in M and let $L = \{p\}' \cap N$ then in generally L can not be a factor. If L is a factor then we can see easily $[N:L] = tr(p)^{-1}$. Here we can consider the following problems concerning basic construction and index of subfactors.

1. Let $N \subset M$ are factors of type II_1 . For which projection e in M, is $\{e\}' \cap N$ a factor and $[N:P] = tr(e)^{-1}$, where $P = \{e\}' \cap N$?

2. Let $N \subset M_i$ are factors of type II_1 with $[M_1 : N] = [M_2 : N]$. Does there exist a *-isomorphism $\phi : M_1 \to M_2$ such that $\phi|_N = \mathrm{id}_N$?

3. Let $N \subset M_i$ are factors of type II_1 with $[M_1 : N] < [M_2 : N]$. Does there exist a factor P with $N \subset P \subset M_2$ such that $[P : N] = [M_1 : N]$?

4. Let $N_i \subset M$ are factors of type II_1 with $[M : N_1] = [M : N_2]$. Does there exist an automorphism ϕ on M such that ϕ maps N_1 onto N_2 ?

5. Let $N_i \subset M$ are factors of type II_1 with $[M:N_1] < [M:N_2]$. Does there exist a factor P with $N_2 \subset P \subset M$ such that $[M:P] = [M:N_1]$?

In fact the problems 2, 3 and 4, 5 are dual each other.

References

[1] V.F.R. Jones, Index for subfactors, Invent. Math. 72 (1983), 1-25.

- [2] D. McDuffd, Central sequences and the hyperfinite factor, Proc. London Math. Soc. 21 (1970), 443-461.
- [3] M. Pimsner and S. Popa, Entropy and index for subfactors, Ann. Sicent. Ec. Norm. Sup. 106 (1986), 57-106.
- [4] S. Stratila and L. Zsido, "Lectures on von Veumann algebras," Abacus Press, 1979.

Department of Mathematics Chungnam National University Taejeon, 302-764, Korea