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ABSTRACT. We do an attempt to solve the Zeeman’s tolerance 
stability conjecture and Takens’ conjecture using the concepts 
of chains.

Let -Y be a compact metric space with a metric d. Let H(X) be 

the set of all homeomorphisms of X to itself: the topology on H(X) 

is induced by the metric

d(Kf,g) = sup{</(/(:r)，X：z:)) : x G X}.

Let K(X) be the set of all nonempty compact subspaces of X with 

the Hausdorff metric : for any nonempty compact subsets A, B of X,

/>(A, B) = max{sup d(a, B), sup d(A, &)}, 
aEA b£B

where d(a, B) = inf {d(a, b) : b E B}. Then K(X) is again a compact 

metric spacte. Let K(K(X)) be the set of all nonempty compact 

subspaces of K(X) with the Hausdorff metric p.

For any f 드 H(X) and x E the set

°(/形) = {/n(후) : n 三 으}

is called the f-orbit through x. Since the set 0(/, x) can be interpreted 

as a point in K(X), we can consider the closure of the set{O(jf, ⑦) : 

:r € X} in K(X), which is denoted by 0(f). The set 0(f) also may 

be interpreted as a point of Hence we consider the orbit

map

O : H(X) K(K(X))
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sending / G H(X) to 0(/).

We say that f E is tolerance stable if the map 0 : H(X) —> 

2f(2f(X)) is continuous in f. The Zeeman’s tolerance stability con

jecture is the following : there is a residual subset S of such 

that each f G H(X) is tolerance stable.

As we can see in [6], this conjecture does not hold. In [6], Taken 

claimed that if the definition of orbit is changed somewhat, the con

jecture is true. The concept of orbit which is used in [6] is the notion 

of extended orbit.

First we have a question under which conditions the map O : 

H(X) -스 K(K(X)) is continuous. To find a condition, we intro

duce the concept of persistence, f 6 is called persistent if for 

any e > 0 there exists 6(e) > 0 such that if < 6 and x G X, 

then there are y, z E X satisfying

d(fn(x), < e and d(fn(z), gn(:r)) < e,

for all n G Z.

THEOREM 1. The orbit map 0 : H(X) — K(K(X)) is continuous 

at f E H(X) if f is persistent.

PROOF: Let € > 0 be arbitrary. Since f is persistent, we can choose 

6 > 0 such that if <%)(/,< 5 and x E X, then

</*), ?"(!/))< | and dCf"(z),g%))<{ 

o o

for some z E X and all n 6 Z. The proof is completed by showing 

that 0(g) C B£(0(/)) and 0(f) C Bs(O(g)), where Be(-) denotes 

the ^-neighborhood of (•). Let A G 0(g). Then there exists x e X 

such that p(A, . Given :r e X, we select z 三 X satisfying

에/" (z),g"(z))<；

for all n G Z. Then we have />(0(/, 之：), 0{g, a:)) < f, and so />(A, 0(/, 乞)) 
< e. This means that 0(g) C Be(0(/)), and hence 0 is upper semi- 

continuous. Let A G 0(f). Then there exists x E X such that 

p(A, 0(/, x)) < Given x G X, we can choose y E X satisfying

r),g"(y))< 승
o 
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for all n 6 Z. Then we have p(0(/,:r), 0(우, J/)) < 응, and so p(』4,0(g, y)) 

< e. This means that 0 is lower semi-continuous. Hence the map 0 

is continuous.

A closed subset A G X is called an e-orbit of /, € > 0； if there 

exists a sequence {xn} of points of X such that《/(/(아),⑦n+i) < e 

and such that {：rn} is dense in A. A closed set A C X is called 

an extended f-orbit if for any e > 0 and 6 > 0, there is an e-orbit 

Ae of f such that p(A, As) < 6. (See [6]). Let Ef C K(X) be the 

set of all extended /-orbits. Using the concept of extended /-orbit, 

Takens showed that there is a residual subset S of H(X) such that 

E : S — sending / G S to Ef, is continuous. Moreover, he

suggested two conjectures :

Conjecture 1. Let f be a diffeomorphism on a compact (metric) 

differentiable manifold X. If f satisfies Axiom A and the strong 

transversality condition, then Ef = O(J).

Conjecture 2. Let X be a compact (metric) differentiable manifold 

and Diff(X) C H(X) is the set of C1 -difFeomorphisms with the C1- 

topology. Then there is a residual subset S of Diff(Jf) such that 

Ef = 0(f)iorfeS. .

In 1980, K. Sawada gave an affirmative answer for the conjecture 1. 

(see [4]).

Now we do an attempt to solve the Zeeman’s conjecture and Takens’ 

conjecture. For this, we define a partial order relation u<” on X, 

induced by f E 方『(』【), as follows : for any y E X, x < y if and 

only if there exists an e-chain {xo,o；i,... ,xn} from x to y, for any 

e > 0, where {x()5 ⑦i, • • •，究n} is called an e-chain from x to t/ if xq = x, 

xn =y and 거(/(船),鉛斗1) < 6 for i = 0,1, •. • ,n — 1.

LEMMA 2. The set P = E X x X : x < y} is compact in 

XxX.

PROOF: Let (a, b) be any point in P. Then we must show that 

(a, 6) G P. Let e > 0 be arbitrary. Since X is compact, we can choose 
6 < 5 < f such that if y) < 6 then d(f(x)> f(y)) < f for x,y £ X. 

Given 으 > 0, there exists (c,d) € P satisfying <I((a,&),(c,d)) < 6, 

where d denotes the metric on X x X induced by d. Since (c, d) € P, 

we can select an 5-chain

{*^o = c, ：z：i, • • •,:i, xn = </}
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from C to d. Then the sequence

{이,⑦ 1,•••，文 n-1,5}

is an e-chain from a to b. In fact, we have

</(/(«), w) < 서Cf(cz),/(：z：o)) + 거CfOo),：z：i)

e e
<2 + 2=£’

and

d(/(:rn_i),5) < d(/On_i),d)+ d(d,b) 

e e
<- + - = £.

This means that (a, b) € P, and so the proof is completed.

We say that the set {y E X : x < y or x > y or x = y} is an 

f-chain orbit through x E X, which is denoted by (7(/, x).

LEMMA 3. The set (7(/, x) is compact in X for each x E X.

PROOF: Let A = {y E X : X < y} and-B = {y e X : x > y}. 

Let 7Ti : X x X — X be the first projection map. Then the set 

(7「i|p)—乂⑦} is compact in P, and so compact in X x X by Lemma 2. 

Since(7Fi|p)“乂⑦} = {x} x A, the set A is compact in X. Similarly we 

can show that the set B is compact in X. Since C(j\x) = AUBU{:r}, 

C(f,x) is compact in X.

In our theorem, the chain orbits take the place of the orbits in 

Zeeman’s original conjecture. Since every chain orbit in X is compact 

in Xj it may be interpleted as a point in K(X). Thus we define 

(7(f) C K’(-X’) to be the set of all chain orbits in X, i.e., C(f) = 

{C(f^x) : x € X}.

LEMMA 4. The set(7(/) is compact in K{X).

PROOF: Let A be any point in C(f). Then we must show that 

A 6 C(f). For any positive integer n, we choose xn 6 X such that 

p(C(/,a:n), A) < 느. Then we may assume that the sequence {xn} 
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converges to x 6 X. Thus we have p(A, (7(/, 鉛)) = 0. This means 

that A = (7(/, x) and so A € C(f).

Now we consider the chain orbit map

C : 日(X) — Kpf(X))

sending f to 0(/). By Lemma 4, the map C is well-defined. The 

Zeeman’s tolerance stability conjecture does hold if we use the chain 

orbit map.

LEMMA 5. Suppose X and Y are metric spaces, with Y compact. 

Let — 2f(y)be either upper or lower semicontinuous. Then 

the set of continuity points of h is a residual subset of X.

THEOREM 6. There is a residual subset S of H(X) such that the 

map C \ S — is continuous in each point of S.

PROOF: By Lemma 5, we complete the proof by showing that the 

map C : IT(X) — is upper semicontinuous. Choose f €

H(X) and x E X. Let C(f,x,6) be the closure of the set

{y E X : 35-chain from x to y, or 35-chain from y to or x = y}

for any 5 > 0, and let C(f,6) be the closure of the set {C(/, :

x € X} of K(X). Then we have C(f) = Q5>0 (7(/, 8). Since K(X) 

is compact and (7(/) is also compact in K’(X), we can choose 5o > 0 

such that for any Q < 6 冬 6(川

C(/,5)CBff(CCf)),

where Bc(-) denotes the ^-neighborhood of (•) under the metric p. If 

< |5o and 0 < 5 < •쫑, then we have

GW C C(川) C C(/,do) C B£(C(/)).

In fact, let {⑦⑴ 究1, • • •, ⑦n} be an 5-chain from x io y for g, x, y e X. 

Then it is an 5o-chain from x to y for f, by the following property :

< 孤/Oi),우Oi)) + t《우(曲),:까+i)

< “^o + 5 < 5o,
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for i = 0,1,..., n — 1. This means that C(、引 6) C C(/, 에 Conse

quently, we have shown that for any e > 0 there exists 5o > 0 such 

that if d()(j\g) < 6o than C(g) C Be(C(/)), and so the map C is 

upper semicontinuous.

Finally, we should investigate what the difference is between 0(f) 

and C(J). For this problem, K. Sawada [4] proved the Takens’ follow

ing conjecture : Let / be a difFeomorphism on a compact differentiable 

manifold M. If f satisfies Axiom A and the strong transversality con

dition, then Ef = O(J).

Here we give a necessary condition to be(7(/) = 0(f). For these 

object, we need a lemma due to Z. Nitecki and M. Shub [2].

LEMMA 7. Let X be a compact manifold of dim > 2 with the 

metric d, and let e > 0 be arbitrary. Then there exists 6 > 0 such 

that if {(rrt,yi) E X x X : i = 1,... ,n} is a finite set of points in 

X x X satisfying :

i) for each i = 1,..., n, d(xi, yi) < 6i and

ii) if i 우 J, then Xi 羊 Xj and yi 羊 yj；

then there exists h G H(X) with(f()(A,lx) < 匕 and h(xi) = yi for

THEOREM 8. Let X be a compact manifold and f G H(X) be 

persistent. Then we have C(f) = 0(f).

PROOF: If X is one-dimensional, then the proof is obvious. Hence 

we may assume that the dimension of X is larger than 1. By definition, 

it is clear that 0(f) C C(/). Thus we must show that C(f) C 0(f). 

Let x e X. Then it is enough to show that C(f,x) C O(f,x). Let 

y € C(J\x). Then we have : x < or x > or x = y. Suppose 

that x < y, and let fc > 0 be a positive integer. Since f is persistent, 

given | > 0, there exists 6i(k) > 0 such that if < 5i, then 

d(/n(^),^n(x)) < | and d(/n(x),^n(w)) < •느 for some 之, w G X 
and all n € Z. Given 6고 > 0, we choose @2(k) > 0 satisfying the 

results of Lemma 7. Let {xq^xi^. ..,be on 62-chain for f from 

x to y. Then the set {(/(⑦0),⑦ 1),• • •,(/(⑦mfe-i)，⑦mfc)} satisfies the 

hypothesis of Lemma 7. Hence there exists h G H(X) such that

do(h,lx) < 6r and 九(/(꺼)) =
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for i = 0,1,..., mjt — 1. By letting gr = 7i o /, we get c?o(/, g) < 61. 

Thus we can choose Zk E X satisfying；

서(/n(강), WO) < I， 

K

for all n € Z. In particular, we have

1 1
d(zk,x) < 三 and d(fmk(zk),y) < 三.

K K

This means that for any 6 > 0, Be(t/) D O(J\x) 羊 0. Suppose not. 

Then there exists e > 0 such that

Be(?/) A {fn(x) : n G Z} = 0, and so

BJjj) A {/"(아) : n G Z} = 0,

for some Zk € Bs(x). This contradicts to the fact that for any k > 0 

there exists Zk E X satisfying (#),?/) < j for some rrtk € Z. 

Thus we have Bs(y) Cl O(f,x) / 0 for any e > 0. This implies that 

Be(y)「1 0(/, x) / 0 for any 6 > 0, and so y e O(J\x). By now we 

have shown that if x < y then y G 0(/, ⑦). Similarly we can show 

that if x > y then y € (9(/, ⑦). This completes the proof.

REMARK 9: In order to get a precise idea of what the relation is 

between Theorem 8 and Takens’ conjecture 1, we should investigate 

what the difference is between persistent diffeomorphism and Axiom A 

difFeomorphism with strong transversality condition.
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