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Some Geometric Properties of the Weak*-integral
Rhie, Gil-Seob and Park, Hi-Kyo

Abstract. We prove that if a weak*-measurable function f 
defined on a finite measure space into a dual Banach space 
is separable-like, then for every measurable set E, the weak* 
core of f over E is the weak* convex closed hull of the weak* 
essential range of f over E.

0. Introduction
Let (Q, E, fi) be a finite measure space and X a Banach space with 

continuous dual X후. An X*-valued function f defined on is said 

to be weak*-measurable if £ o / is measurable for each x E X. A 

weak*-measurable function f is said to be weak*-integrable if £ o / is 

integrable for each :r 6 X, and the weak*-integral of f over E G S 

means the element x후 of X* such that :r》(⑦) = fEi o f dp, for all 

x E X. We write 께 = (w*) —

In the present paper, we consider weak* cores of weak*-measurable 

functions (cf. The definition of [1]) and define weak* essential ranges 

of weak*-measurable functions (cf. Definition 1.2. of [7]), and inves

tigate their properties. For a subset A of X*, the weak* closure of A 

in X* and the weak* closed convex hull of A in X* are denoted by 

Aw and cow*(A), respectively.

1. The weak* core
We consider a weak* analogy of the core in [4] and investigate its 

properties.

DEFINITION 1.1: Let / : Q —> X* be a weak*-measurable function 

and E a measurable set. The weak* core of f over E is defined, 

denoted cor ；(」E), to be the subset of X* given by the formula

cor；(E)= p| cow*(/(E\A)).

이 A=0

We give two lemmas which provide the basis for the section.
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LEMMA 1.2. (The mean value theorem for the weak*-integral) Let 

/ : fl —> X* be weak1*1 -integrable. Then for each measurable set E of 

positive measure

ecow\f(E)),

PROOF: Suppose there is a measurable set E of positive measure 

such that
忌 ((w*)-Z/아) 우하’* (/(£))’

then by the Hahn-Banach theorem [8, Theorem 3.4.(b)] and the fact 

that (X*, weak*)* = X [2, Theorem V.I.3.], there exist an :r in X, a 

real number a such that

x o f d/j, < a < f(w)x

for all w in E,

Integrating over

I £ o f dji < <씨< i i o f dfj누 

J E J E

a contradiction. Q.E.D.

LEMMA 1.3. Let X be a locally convex topological vector space 

and A a subset of X. Then x is a member ofco(A) if and only if for 

every ⑦* G X*, x*(x) > inf{:r*(a) : a € A}.

Now we prove in details (i), (ii) and (iii) of proposition 1 of [1].

THEOREM 1.4. Let / : Q — X* be a weak허-integrable function. 

Then

(a) for every measurable set E of positive measure, cor 주 (E) is not 

empty：

(b) for every measurable set E of positive measure, cor 주(E) =

흐"’* {브 ((=*)— Jb f 如) : B C > 0).
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PROOF: The proof of (a) is omitted. For the proof of (b), let 

B be a subset of positive measure of 乃, A a null set. Applying 

Lemma 1.2, 규슈 ((⑦*) — JB f dp) G cow*(/(B\A)), which is con

tained in cow*(/(E\A)). Hence cor y(E) contains

co : B C E, 11(B) > 0

For the opposite direction, let :r* be an element of cor ；(£：), and x in 

X. For any e > 0, choose a countable partition ir of E and a function 

<》, constant on the set in %, such that the inequality |/(w):c—<》(w)| < f 

holds for all w in E. Note that if B is any set in 7r with positive 

measure and w in B then we have the inequality.

애汝-느 L애fd』＜

Let A be the union of the null sets in 기「. Since ⑦* G cow*(/(jE\A)), 

there exists a finite convex sum X어with Wi G E\A such that

核*(찌 - EXf(Wi)씨 < f-

Finally, for each number i let Bi be the set in 7r containing Wj. Observe 

that
冗*(⑦) —〉2場—7느 I xofdfi <6.

J Bi

Since e is arbitrary, we have that

鉛*(位) > inf {—느J 어 & 令 f dp : B C E川(B) > o|.

It follows from Lemma 1.3 that x* is an element of

cow* {느 ((W*) — 우/印) : B C E, 11(B) > o| .Q.E.D.

DEFINITION 1.5: Let f, g :《I — X* be weak*-measurable, f and 

g are said to be weak* equivalent if for each x in XJxof = xog 

almost everywhere.

Using the notion of the essential supremum, one can immediately 

verify following lemma.
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LEMMA 1.6. Let a and 0 be real-valued and measurable and E a 

measurable set of positive measure. If a(w) < /3(w) for all w in E, 

then there exists a. set E1 C E such that /』>(£}') > 0 and

supa(£y)< inf/?(•£/).

The proof of the lemma is omitted.

THEOREM 1.7. Let /, : Q —> X* be weak*-measurable functions 

and E a measurable set. Then for each x in X,xof = xog a.e. if 

and only if cor 추(乃) = cor ；(乃) for every measurable set E.

PROOF: Suppose that x o f = x o g a.e. for all x in X. Let X* be 

any element in cor ；(B), and let Ao be a null set. We will show that 

for each x in X,

⑦*(⑦) > inf{이(w)⑦ : w G E\Aq}.

To this end, fix x and let Ai = AqU {w : f(w)x / g(w}x}. Clearly 

사(Ai) = 0, hence 文* is an element of cdw (f(E\Ai)) and

⑦*(⑦) > inf{/(w):r : w G E\Ai}

= inf{오(w)j： : w G E\Ai}

> inf {g(w)x : w G E\Aq}.

For the converse, suppose there is an x in X such that the condition 

xof = xog a.e. fails. We may assume without loss of generality that

p>{w : /(w)⑦ < g(w)x} > 0.

By Lemma 1.6, there must be a set Ef of positive measure such 

that sup{/(w)jr : w € 1미} < inf{우(w)a: : w E Er}.

The sets cow* (/(£?')) and cow*(^(E')) are 난ms disjoint, and the 

equality cor y(£?) = cor *(£?) can only hold the weak* cores of f and 

g are empty. Q.E.D.
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2. The weak* essential range

DEFINITION 2.1: Let y be a weak*-measurable function from Q 

into X* and E G ^3，We define the weak* essential range of / over 

E, denoted to be the set of those :r* G X* such that for every 

e > 0 and for every finite subset A of the ball of X (denoted by 
Ball(X)), the measure of E E : \x o f(t) — :妙*})| < e} is

strictly positive.

REMARK: One can immediately show that rr* € ry(£?) if and only 

if for every e > 0 and for every finite subset A of X,

/z(Q{w eE：|2of(t) —

And it is clear that if f and g are weak* equivalent then = r；(」EQ 

for each E 6 %)

PROPOSITION 2.2. — X* is weak*-measurable and E G 乞,
then

(a) r；(乃) is a weak3*‘ closed subset of X*.

(b) If f』i(E) = 0, then r^(E) = 0.

(c) E C F implies 呼(乃) C r；(F), E,Fe 己

PROOF: (a) Let x* g Then there exist an e > 0 and a

finite A C Ball(X), 사 (Qa.GA{w G E : |：z}(：r) — £ o /(w)| < s}) = 0. 

Let 껴‘ G Azga{흐* e 조* : — ^*(^)1 < f }• Then

Therefore 껴' , (乃) and r^(E) is weak* closed,

(b), (c) are clear from the definition. Q.E.D.
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THEOREM 2.3. If p(E) > 0, / : Q —> X* is norm-separable valued 

weak*-measurable, then r}(E)「1 f(E) is not empty.

PROOF: Suppose PI f(JE) = 0, then for every v G E, there 

exist a finite Av C Ball(X) and an > 0 such that

P| {w E E :\xo f(w) — x o y(v)| < 見}) = 0.

Since f(E) is norm separable, there exists a sequence (vn) in E 

such that f(E) C (JXi」日(/(아1)，8리 Therefore

•日 C(j( P| {w E E : \x o - x o f(vn)\ < 

n=l

and ii(E) = 0, which contradicts to our assumption. Q.E.D.

COROLLARY 2.4. Under same hypothesis in Theorem 2.3, N = 

{w E E : f(w) 우 r；(E)} is a null set.

PROOF: If 아(N) > 0, there exists 孔n w E E such that /(w) G 

r}(N) C ry(E) which contradicts the definition of N. Q.E.D.

THEOREM 2.5. Let f : Q — X* be norm separable and wea』c*- 
_ w *

measurable and let E E 江. Then r；(E) =「|"=0 /(乃VO •

PROOF: If f丄(E) = 0, it is clear from Definition 2.1. Fix E E 乞 

with /i(E) > 0. Let Xq G r；(E) and A any null set. For given e > 0 

and a finite A > X, we know that the set

p| {w e E : |£ o f(w) — Xq(x)\ < e}

has positive measure (see Remark).

In particular, there exists w(引八)G E\A such that

|i o y(w(£,A)) — ^0(^) < e for all ⑦ G A.

.............. w*
Hence a} G f(E\A) . Since this holds for each mull set A, we get
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Conversely suppose ft(E) > 0 and Xq G「!“=()/(」E八刀) • For 

any given A C Ball(A') and 5 > 0, let >1(£,a)= 三 乃 :

\x o J(w) — a%(：r)| < e}. Then clearly a% g /(」E八A(e，八))W . Therefore 

사G4(e,A)) > 0. Since this holds for each finite A C Ball(X) and for 

each e > 0, G (흐). Q E.D.

COROLLARY 2.6. Under same hypothesis Theorem 2.5, if E E 52,
| ' ............. 广

then r；(E) = f(E\N) where N = {w E E : /(w) $ 呼(石)}.

'"빼— ■■■■파*
PROOF: Since f(E\N) C 呼(£*) and r； is weak* closed, f(E\N) 

C r}(E). The opposite direction is trivial. Q.E.D.

THEOREM 2.7. Let y : Q —> X* be norm separable and weak*- 

measurable. Then cor 후(E) = cow*(ry(£?)) for all E E 乞.

...... ' w* 쏘
PROOF: Since f(E\A) C cow (f(E\A)) for each null set A, and 

cor }(E) is weak* closed convex, we get @w*(r；(乃)) C cor 후(E).
. . --- --- -w*

Conversely, since there is a null set Ao such that r}(E) = f(E\Ao) 

cor X乃) =「)"=0=어(/(乃\孔)) C co-*(/(E\A0)) = =여(呼(乃)). 

Q.E.D.

For our main result, we define a terminology as an analogy of 

Huff[5].

DEFINITION 2.8: A weak*-measurable function /:(〉一> X* is 

separable-like provide there exists a norm separable subspace D of 

X 후 such that for every x E xo (Xmf) = xo f a.e. where Xp is the 

characteristic function of D.

THEOREM 2.9. If a weak*-measurable function / : Q —나 X* is 

separable-like, then cor }(E) = cow^ (r^(E)) for alLE E 乞.
j혀 '

PROOF: The result follows immediately from Theorem 1.7, Theo

rem 2.7, and Remark under Definition 2.1. Q.E.D.
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