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Some Geometric Properties of the Weak*-integral

RHIE, GIL-SEOB AND PARK, Hi-Kyo

ABSTRACT. We prove that if a weak*-measurable function f
defined on a finite measure space into a dual Banach space
is separable-like, then for every measurable set E, the weak*
core of f over E is the weak* convex closed hull of the weak*
essential range of f over E.

0. Introduction

Let (2, X, p) be a finite measure space and X a Banach space with
continuous dual X*. An X*-valued function f defined on 2 is said
to be weak*-measurable if Z o f is measurable for each z € X. A
weak*-measurable function f is said to be weak*-integrable if Z o f is
integrable for each z € X, and the weak*-integral of f over E € ¥
means the element ¢} of X* such that z}(z) = [p & o fdu for all
z € X. We write 23, = (w*) — [5 f du.

In the present paper, we consider weak* cores of weak*-measurable
functions (cf. The definition of [1]) and define weak* essential ranges
of weak*-measurable functions (cf. Definition 1.2. of [7]), and inves-
tigate their properties. For a subset A of X*, the weak* closure of A
in X* and the weak* closed convex hull of A in X* are denoted by

A" and o’ (A), respectively.

1. The weak™* core
We consider a weak* analogy of the core in [4] and investigate its
properties.

DEFINITION 1.1: Let f: ) — X* be a weak*-measurable function
and E a measurable set. The weak* core of f over E is defined,
denoted cor }(E), to be the subset of X* given by the formula

cor }(E) = ] @ (F(E\A)).
pA=0

We give two lemmas which provide the basis for the section.
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LEMMA 1.2. (The mean value theorem for the weak*-integral) Let
f :Q — X* be weak*-integrable. Then for each measurable set E of
positive measure

u(E) ((“’ ) - / f d#) € %" (f(E)).

PROOF: Suppose there is a measurable set E of positive measure

such that
() [ 1ae) 65

then by the Hahn-Banach theorem [8, Theorem 3.4.(b)] and the fact
that (X*,weak*)* = X [2, Theorem V.1.3.], there exist an z in X, a
real number a such that '

u(—lA)-/I;:iofdy<a<f(w)m

for all win E.

Integrating over E,

/:f:ofdp<au(E)</§:ofdp,
E E

a contradiction. Q.E.D.

LEMMA 1.3. Let X be a locally convex topological vector space
and A a subset of X. Then z is a member of c6(A) if and only if for
every z* € X*, *(z) 2 inf{z*(a) : a € A}

Now we prove in details (i), (i1) and (iii) of proposition 1 of [1].

THEOREM 1.4. Let f : Q@ — X* be a weak*-integrable function.
Then

a) for every measurable set E of positive measure, cor is no

f ry ble set E of positi #(E) is not
empty.

(b) for every measurable set E of positive measure, cor }(E) =

*

v {ﬁ (") = f fdu) : B C B, u(B) > 0}.
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PROOF: The proof of (a) is omitted. For the proof of (b), let
B be a subset of positive measure of E, A a null set. Applying
Lemma 1.2, -5y ((w*) — [ fdu) € € (f(B\A)), which is con-

tained in 2* (f(E\A)). Hence cor #(E) contains

ww'{ﬁ—) ((w*)—/de,u) :BcE,u(B)>0}.

For the opposite direction, let z* be an element of cor 3(E), and z in
X. For any € > 0, choose a countable partition = of E and a function
¢, constant on the set in 7, such that the inequality | f(w)z—¢(w)| < £
holds for all w in E. Note that if B is any set in m with positive
measure and w in B then we have the inequality.

f(w)yz ———=< | #ofdp <§.

(B)

Let A be the union of the null sets in 7. Since z* € @* (f(E\A)),
there exists a finite convex sum ) t;f(w;) with w; € E\ A such that

[2*(2) = Y tif(wi)al < 2.

Finally, for each number z let B; be the set in 7 containing w;. Observe

that .
z*(zr) — ti—— zofd
( ) Z F‘(Bi) /B.’ :
Since ¢ is arbitrary, we have that
1
z*(z Zinf{—/:%ofd :BCE, B>0}.
(2) B Js p #(B)

It follows from Lemma 1.3 that z* is an element of

o { B) ((w ) — /B fdp) : B C E,u(B) > 0} .QE.D.

DEFINITION 1.5: Let f, g : 2 — X™* be weak*-measurable. f and
g are said to be weak* equivalent if for each z in X, Zof =2 og
almost everywhere.

<E.

Using the notion of the essential supremum, one can immediately
verify following lemma.
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LEMMA 1.6. Let a and f be real-valued and measurable and E a
measurable set of positive measure. If a(w) < f(w) for all w in E,
then there exists a set E' C E such that u(E') > 0 and

sup a(E') < inf B(E").

The proof of the lemma is omitted.

THEOREM 1.7. Let f, g : 2 — X* be weak*-measurable functions
and E a measurable set. Then for each x in X, Zo f =Zog a.e. if
and only if cor 3(E) = cor ;(E) for every measurable set E.

PROOF: Suppose that £o f = Zog a.e. for all z in X. Let X™* be
any element in cor }(E), and let Ao be a null set. We will show that
for each z in X,

z*(z) > inf{g(w)z : w € E\Ao}.

‘To this end, fix z and let A; = Ao U {w : f(w)z # g(w)z}. Clearly
(A1) = 0, hence z* is an element of ©*" (f(E\41)) and

z*(z) > inf{f(w)z : w € E\ A1}
= inf{g(w)z : w € E\A4,}
> inf{g(w)z : w € E\Ao}.

For the converse, suppose there is an = in X such that the condition
Zof = Zog a.e. fails. We may assume without loss of generality that

p{w : f(w)z < g(w)z} > 0.

By Lemma 1.6, there must be a set E' of positive measure such
that sup{f(w)z : w € E'} < inf{g(w)z : w € E'}.

The sets % (f(E')) and @ (9(E')) are thus disjoint, and the
equality cor }(E) = cor ;(E) can only hold the weak* cores of f and
g are empty. Q.E.D.
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2. The weak™* essential range

DEFINITION 2.1: Let f be a weak*-measurable function from (2
into X* and E € ) . We define the weak* essential range of f over
E, denoted r}(E), to be the set of those z* € X* such that for every
€ > 0 and for every finite subset A of the ball of X (denoted by
Ball(X)), the measure of [ ,ca{w € E : |20 f(t) — z*(z)| < €} is
strictly positive.

REMARK: One can immediately show that z* € r}(E) if and only
if for every € > 0 and for every finite subset A of X,

u(ﬂ {weE:|Zof(t)—z*(z)| < 6}) > 0.

€A

And it is clear that if f and g are weak* equivalent then r}(E) = rj(E)
foreach E€ ).

PROPOSITION 2.2. If f : Q — X* is weak*-measurable and E € ),
then

(a) r3(E) is a weak™ closed subset of X™*.
(b) If w(E) =0, then r}(E) = 0.
(c) EC F impliesr3(E) Cr}(F), E, F € ).

PROOF: (a) Let z* ¢ r}(E). Then there exist an ¢ > 0 and a
finite A C Ball(X), p (N,eaf{w € E : |z§(z) — &0 f(w)| <e}) = 0.
Let 2} € (,ea{z* € X* : |25(z) — 2*(z)| < §}. Then

(z) =20 f(w c
p(zrel{w € E: |z](z) flw)| < 2})

—u( N we Bsleie) - 20wl +5 <))

TEA

<u( N tw e Bilai(@) - 20 fw) <)) =0

TEA

Therefore z7 ¢ r}(E) and r}(E) is weak™ closed.
(b), (c) are clear from the definition. Q.E.D.
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THEOREM 2.3. If u(E) > 0, f: & — X* is norm-separable valued
weak*-measurable, then r3(E) N f(E) is not empty.

PROOF: Suppose r}(E) N f(E) = 0, then for every v € E, there
exist a finite A, C Ball(X) and an €, > 0 such that

/,L( n {w€ E:|%o f(w)— 2o f(v) <6,,}) = 0.
TE€EA,

Since f(E) is norm separable, there exists a sequence (v,) in E

such that f(E) C Use; B(f(vn),€v, ). Therefore

EC U( N {wEE:|§:of(w)—§:of(vn)[<evn}),

=1 “z€A,,

and p(E) = 0, which contradicts to our assumption. Q.E.D.

COROLLARY 2.4. Under same hypothesis in Theorem 2.3, N =
{we E: f(w) ¢ r;(E)} is a null set.

PROOF: I u(N) > 0, there exists an w € E such that f(w) €
r$(N) C r3(E) which contradicts the definition of N. Q.E.D.

THEOREM 2.5. Let f : Q — X™ be norm separable and weak™-
measurable and let E € ). Then rHE) =, a=0 f(E\A)w .

PROOF: I u(E) = 0, it is clear from Definition 2.1. Fix E € )
with u(E) > 0. Let zg € r}(E) and A any null set. For given € > 0
and a finite A > X, we know that the set

{weE:|¢o f(w)—zj(2)| <e}

TEA

has positive measure (see Remark).
In particular, there exists w(, o) € E\A such that

|& 0o f(w(e,a)) — zo(z) < € for all z € A.

Hence 3 € f(E\A) . Since this holds for each mull set A, we get
2* € Muazo F(EVA) .
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Conversely suppose u(E) > 0 and z§ € (),40 f(E\A)w . For
any given A C Ball(X) and € > 0, let A¢,a) = (1,ea{w € E :

|# 0 f(w) — z3(x)| < €}. Then clearly z} ¢ f(E\A(c.a)) - Therefore
(A a)) > 0. Since this holds for each finite A C Ball(X) and for
each € > 0, zg € r}(E). Q.E.D.

COROLLARY 2.6. Under same hypothesis Theorem 2.5, if E € ),
then r}(E) = f(E\N)w where N = {w € E: f(w) ¢ r}(E)}.

PROOF: Since f(E\N) C r;(E) and r} is weak* closed, f(E'\N)w '

C r3(E). The opposite direction is trivial. Q.E.D.

THEOREM 2.7. Let f : Q@ — X* be norm separable and weak*-
measurable. Then cor }(E) =¢o” (r}(E)) forall E € 3_.

PROOF: Since f(E\A)w' C @" (f(E\A)) for each null set A, and
cor }(E) is weak™ closed convex, we get o (r}(E)) C cor 3(E).

Conversely, since there is a null set Ao such that r}(E) = f(E\Ao)w
cor }(E) = N,4=00" (f(E\Ao)) C 20* (f(E\Ao)) = ©0* (r}(E)).
Q.E.D.

For our main result, we define a terminology as an analogy of
Huff[5].

DEFINITION 2.8: A weak*-measurable function f : € — X* is
separable-like provide there exists a norm separable subspace D of
X* such that for every z € X, £o(Xpf) = Z o f a.e. where Xp is the
characteristic function of D.

THEOREM 2.9. If a weak*-measurable function f :  — X* is
separable-like, then cor }(E) = o (r}(E)) for alLlE € }_.
P

PROOF: The result follows immediately from Theorem 1.7, Theo-
rem 2.7, and Remark under Definition 2.1. Q.E.D.
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