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A Decomposition of Positive Linear Operators
on the Ordered Space of 2 x 2 Hermitian Matrices
into a Sum of Four Extreme Operators

ByunGg Soo MooN

1. Introduction

We denote E to be the real ordered space of all 2 x 2 Hermitian
matrices with the positive cone consisting of all elements having non-
negative eigenvalues. A linear operator T on E is said to be positive
if T(P) > 0 for every P > 0, and T is extreme if S = AT for some
A >0 whenever 0 < S <T.

It is proved in [1] that a positive linear operator T on E is extreme
if and only if it is unitarily equivalent to a map of the form Sz for
some 7 € C2. The linear operator Sy is defined by Sz(z7*) = wWuw* for
every T € C? where w; = z;zi, 1 = 1,2.

We know by the Krein-Milman theorem that every positive linear
operator on F is a convex combination of extreme operators. But in
this paper, we prove that every positive linear operator on E can be
decomposed into a sum of four extreme operators. Note that the di-
mension of E is four and hence the vector space of all linear operators
on E has dimension sixteen.

In the following, we denote E;; for é',-é‘ir , By for &1€F + &ef and
Ey; for i&1eT — iéyeT where & = (1,0)T, é = (0,1). The unit
matrix Ey; + E22 will be denoted by I while I will also be used for
the identity operator on E. Recall that every element of E can be
written as AZZ* + uyy* for some A\, 4 € R and an orthonormal set
{Z,y} of eigenvectors. A linear operator T is deterrr}(i)ned if T(£2™) is

1
defined for every ¥ € C? and hence if T (rel‘w r:2 ) is defined for
all r > 0, 6 € R along with T'(E»2).

If Q is an arbitrary nonsingular matrix, then we define a linear

operator by Sq(A) = QAQ* for all A € E. Note that 351 = Sg-1.
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When U is a unitary matrix, we write simply U instead of Sy. In

case U = ((1) 6_0,-0,> for a € R, then we have

a b+c) _ a b+c *
SU(b—ci d )_U(b—ci d )U

- ((b - c(:)e_*“ o Zi)em )

for all a, b, ¢, d € R. We write this operatoi~ as S, instead of Sy or
U. Note that we have S;1 = S_,.

THEOREM 1.1. Let T be a positive linear operator on E. Then T
~ is extreme if and only if there exist unitary matrices U, V and 7 € C?
suchthat T=UoS,oVorT=Uo0S,0V.

COROLLARY 1.2. Let T be a nonzero positive linear operator on
E. Then T is extreme if and only if T maps every extreme point of
E to either 0 or another extreme point.

The proof of Theorem 1.1 and Corollary 1.2 above are given in [1;
5.1, 5.2]. We quoted them here as they are used in the following
sections.

COROLLARY 1.3. Let @ be an arbitrary 2 x 2 matrix, W be a
unitary matrix, 7, w € C2, and T = Szo W 0 Sz. Then

(a) Sg=U10Sz0V; or_-S_Q =U;0Sz0V;

(b) T=Uz0S50V2 or T=Uz0S5;0V;

for some unitary matrices U;, V;, i = 1,2, and Z, § € C%

PROOF: Note that both Sg and T map extreme points to zero
or other extreme points. Therefore, they are extreme operators by
Corollary 1.2 and hence Theorem 1.1 applies.
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2. Preliminaries

In this section, we consider some of the elementary results that are
necessary for the proofs in section 3. We also prove that a positive
linear operator T on E with dim(KerT) > 2 is a sum of four extreme
operators.

We quote the following two Lemmas from [1] without proof as they
are used frequently in what follows.

LEMMA 2.1. If{Z,¢} is a linearly independent set in C2, then there
exists a nonsingular matrix Q such that Sq(£z*) = Eq1, Sq(yy™*) =
E,,.

LEMMA 2.2. Let T be a positive linear operator on E with
dim(KerT') = 2. Then there exist unitary matrices U and V such
that for S = U o T oV, we have (Ker S)° = Span {zz*,yy*}, S(E) =
Span {Z7*, Ww*} for some Z, ¥, Z, W € C2.

LEMMA 2.3. Let T be a positive linear operator on E with T(ZZ*)

= z{{* for all # € C? where { is fixed. then there exist unitary
operators U, Vi, Vo and Z, & € C?2 such that T =V, 0Syo W + V0
SgzoU.

PROOF: We define a linear functional on E by f(zz*) = A; where
Az is from T(Z7*) = z{{* Then f is clearly positive and hence there
exists 0 < P € E such that f(A) (P,A) for all A € E. We write
P = ani* + BCC* where {n,C} is orthonormal and let U = (17,5)
then UPU* = aEy; + fE;;. Now, we have T(Zz*) = (P, £ )Ef*
(F*PZ)EE* = U (aEn + BExn)UZEE* = §*(aBn + BEx)yEE"
(aly1|? + Blyz|?)E€*, where f = UZ. Let S =T o U*.

Note that we may assume E*E = 1 and we can take ;7' € C? such
that {E, 7'} is orthonormal. Let V = ({,7] )*, then Vo S(a: ) =
(a|z1|24B|z2|?)E11 = aSz(ZTT*)+BWoS5(ZT*) where 7 = €, W = €2,
W = E;5. Therefore, we have T = V* 0 Szo U+ V*oW o SgoU.
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THEOREM 2.4. Let T be a positive linear operator on E with
dim(KerT) = 3. Then T is a sum of four extreme operators.

PROOF: Let T(Zz*) = A,P where 0 < P € E. We write P =
£€*+777* and define Ty (F2*) = A\, €€, To(F7*) = A, 75" for all ¥ € C2.
Then we clearly have 0 < T}, T3. By Lemma 2.3 above, both T} and
T, are sums of 2 extreme operators and hence T is a sum of four
extreme operators.

LEMMA 2.5. Let S be a positive linear operator on E with S(E) =
Span {E11, E22} and S(E12) = S(E12) = 0. Then S is a sum of four

extreme operators.

PROOF: Let S(Eu) = a1F11 + azE», S(Ezz) = a3 F11 + agFa2
where a; > 0, 1 = 1,2,3,4. Then for every ¥ € C?, we have

5(Zz*) = S(|z1|*En1 + |22|*E22) = |z1|*S(E11) + |22]>S(E22)
= |z1|*(a1E11 + a2E32) + |22|*(as E11 + agEs2)
= (a15;‘+ a2V o Sz+ azV o Sg + asSg)(T*)

with 2= €}, W = €2, and V = Ey;5. Therefore, we have S = a1 57 +

aVoSs+azVoSz+ Ss.

THEOREM 2.6. Let T be a positive linear operator on E with
dim(KerT) = 2. Then T is a sum of four extreme positive opera-
tors.

PRrROOF: By Lemma 2.2, there exist unitary operators U and V
such that for Ty = U o T o V, we have (KerT1)° = Span {Z*, y§™*}
and T1(E) = Span {Z2*,ww*}. Now by Lemma 2.1, there exist Sg,
Sr such that Sg(Ey;) = Zz*, Sg(E22) = yy*, Sr(ZZ*) = Ein,
Sr(WwW*) = Ezy. Let S = SpoTj 0Sg then S(E) = Span {E11, Eg2 }
and (Ker S)° = Span {Ei1, E22}. Therefore, by Lemma 2.5, S is a
sum of four extreme operators and hence so is T'.
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3. Decomposition of Positive Linear Operators

In the previous section, we proved that any positive linear operator
on E with dim(KerT) > 2 can be decomposed into a sum of four
extreme operators. In this section, we prove that the same holds

when dim(Ker T') < 1.

LEMMA 3.1. Let T be a positive linear operator on E with T(E11)
= )\Ell, T(Ezz) = E22, T(Elz) = E12, T(Em) =0 where )\ 2 1.
Then T is a sum of two extreme operators.

PROOF: Let a = 3(A + VA2 =), B = (A — VAT = X), then we
‘haveaf =14, (A-a)1-f)=10<a<)and0< <} We
define

5 (b—acz’ btlcz:) - (W?ba—ci)v \/a_ﬂg;“l:))
(s fa ") = (o2 V0l0d):

then it is clear that T = S, + Su.

LEMMA 3.2. Let T be a positive linear operator on E with T(E;)
= FEy,, T(Ezz) = FEsq, T(Elg) = cFiq, T(Elg) = dFE,, where 02+d2 7é

0. Then T is a sum of two extreme operators.

PROOF: Note that we must have ¢ + d?> < 1 since T > 0. First,
we consider the case where ¢ + d? = 1. Let ¢ = cosT, d = sin7, and
S = T o Uy, then it is routine to verify that S(Ei;) = Eji, ¢ = 1,2,
S(E12) = Eno, S'(E'lz) = 0. Therefore, S is a sum of two extreme

operators by Lemma 3.1 and so is T
Next, we consider the case with ¢ 4+ d? < 1. Let t = 1/v/c? + d2,

cosT = tc, sinT = dt, and Ty = tT then T3(E;;) = tE;, 1 = 1,2,
Ty1(E12) = cosTE;2, Tl(Elg) = sintE;;. If § = T, o U,, then
S(E12) = Eiz, S(E12) = 0, S(Ei) = tEy, i = 1,2. Let 77 =
(V4,1/v/%), S1 = S, 08, then Si(En) = AEn, Si(Ex2) = Ena,
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$1(E12) = Ey, Si(Ei2) = 0 with A = 2. Therefore, $; is a sum
of two extreme operators by Lemma 3.1 and hence T is a sum of two
extreme positive operators by Corollary 1.3.

LEMMA 3.3. Let T be a positive linear operator on E with
dim(Ker T) < 1. If T(Ei;) = Eii, i = 1,2, T(E12) = cEy, T(Er2) =
dElg where 0 < |d| < ¢ < 1,d € R, then T is a sum of two extreme
operators.

PROOF: Note that if ¢ = 1, then T = dI 4+ (1 — d)I, a sum of
two extreme operators. Thus, we assume ¢ < 1. Let a = %(1 —
cd — /(1 —cd)? —(c—d)?), B = 3(1 —cd + /(1 — cd)? — (c — d)?),
v = <%, Note that (1 —cd) > (¢ —d) > 0 from (1 — c)(1 +d) > 0
andthat 0 < a, < 1,aB =72 (1—a)(1-B)=(c—7v)(d—7). We
define

S(En) = aE11, S(Egz) = ﬂEzz, S(Em) = ’)/E12,
S(Elz) = —vEy,, R(Ey) = (1 — a)Eqy,
R(Ez) = (1 - B)Ex, R(E12) = (¢ —7)E12, R(E12) = (d+7)En2.

Then we have

S 1 rei®) _ a yr(cos @ — isin 6)
re=® g2 |7 yr(cos 8 + ¢sin §) pBr?

R 1 ret?) l1-a (¢ —4)r(cos8 + isin8)
re ™ r? |7 |(c—~v)r(cosf —isinb) (1 - B)r?

for all » > 0, § € R. Now, note that S and R are of the form S, from
af =% (1 —a)(1 = B) = (c — )% Therefore, T = R+ S is a sum

of two extreme operators.

THEOREM 3.4. Let T be a positive linear operator on E with
dim(KerT) < 1. If dimF > 2 where F = Span{zz* | T(Fz*) is
extreme}, then T is a sum of two extreme operators.

PROOF: Let {

, 5"} be a basis of F' with =y*y=1and
let T(.’D ) = ZZ (_‘?T*) =

T
ww*. Note that {Zz*, ww*} is linearly
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independent since otherwise dim(T(E)) < 1, i.e. dim(KerT) > 3.
We apply Lemma 2.1 to find Sqg and Sr such that Sq(E11) = zz*,
SQ(E22) = yy SR(Z-*) = E11, SR(’U_.;H-; ) = Ezz, and let S = SR (o]
T o SQ Then we have S(E;;) = E;;, ¢ = 1,2 and hence S(E2),
S(E12) € Span {E]Q,El2} from S > 0.

Let S(E12) = aFy2 + bElz, S(Elz) = cFEy2 + dE12, where a, b, c,
d € R and let tan 21 = —2(ac + bd)/(c? + d% — a® — b?), Sy = So U,.
Then

acosT + csinT +i(bcosT + dsinT)

=tA(—asin7 + ccosT + t(—bsin7 + dcos 7))

for some real A. Note that the left hand side of the above is the
(1,2)-component of S1(E12) and the right hand side is ¢\ times the
(1,2)-component of Sl(En). Therefore, there exists o such that S; =
S5 081 = 8,08 0U, satisfies S3(E12) = aFra, S2(E12) = BEy2 with
a, B € R. Note that we could take T =0 =0 whena=b=c=d,
and 7 = Z when ¢® + d®> = a® + b>. We may assume |a| > || by
applying Uz if necessary and also assume o > 0 by applying Ux.
Now, note that we cannot have a > 1 since Sz > 0 and hence we
have 0 < |8| < @ < 1. Therefore, by Lemma 3.3, S2 is a sum of two
- extreme operators and hence so is T' by Corollary 1.3.

EXAMPLE 3.5. Let T(E;) = V2Ey, ¢ = 1,2, T(Ey2) = Eio,
T(Ey2) = Ey3. Then we clearly have T > 0 and dim F' > 2. As in the

proof of Theorem 3.4, we take 7 = ¥ since we have E+d:-a’-2 =0
in this case. Let § = T o U,, then S(Ey;) = \/_E,,, i = 1,2,
S(Ey2) = V2E;,, S(E]z) = 0. Thus, we can write S = \/- \}-—

where I is the identity operator. Therefore T' = ‘}_I oU_.+ \/-I oU_,,

i.e. T is a sum of two extreme operators.

LEMMA 3.6. Let T be a positive linear operator on E with T(Ey;)
= 0. Then T is a sum of two extreme operators.

PROOF: Note that T(E;;) = T(E;;) = 0 since T > 0 and hence
we have dim(T(E)) = 1. Let T(E;3) = P where P > 0 and let UPU*
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be diagonal with a unitary matrix U. If S = U o T, then S(E32) =
d1Eyy + dy Es; for some dy, d2 > 0. Thus, we have S =V o Sz + Sz
where 2 = €3, V = E;, and hence T is a sum of two extreme operators.

LEMMA 3.7. Let T be a positive linear operator on E and F =
Span {£z* | T(£7*) is extreme}. If dim F' > 3, then T is a sum of two
extreme operators.

PROOF: In view of Lemma 2.1 and Corollary 1.3, we may as-
sume T(Eu) = E]], T(E;)z) = E22, T(Elz) = CE12, T(Elg) =

T
(cegi’ c% > with ¢ > 0. Here we have applied a unitary map of the

form S, in front of T to obtain the form in T'(E;2) and T(E12). Note
that we have c?(1 + |cos7|) < 1 since T > 0. Now, from dim F' > 3,
we have

T 1 ret?) 1 rc(cos @ + €' sin 6)
re”® 2 )7 \rc(cosd + e " sinb) r?

is extreme for some r # 0. Therefore, ¢?(1+sin26 cos7) = 1 for some
6 € R, which implies c?(1 + | cos7|) = 1.

Note that T is a sum of two extreme operators if and only if so is
T and hence we may assume 0 < 7 < 7. First, we consider the case
0 <7< 7 so that cosT > 0.

Let

_ 1 1 1 1 /1 er/2
anclS = V;O ToU. Then S(E") = E,',‘, 1 = 1,2, S(Elz) = E12,
S(E12) = tE1; wheret = tan(7/2). Notethat 0 <t < 1. Ift =1, then
S is extreme and if t < 1 then S = AI'+ (1 — A)I where A = (1+1)/2.
Therefore, S is a sum of two extreme operators and hence so is T'.

Next, we consider the case with 3 < 7 < 7. We repeat the same
process with

1 1 1 1 (1 —ie3!

U=$<e§i __e%")’ V=$(1 ie%i>
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to obtain S(Ey;) = Eii, i = 1,2, S(E12) = Er2, S(Ey3) = cot(r/2) Es2.
Thus, by a similar argument, S is a sum of two extreme operators and
hence so is T'.

LEMMA 3.8. Let T be a positive linear operator on E with T(En)
= E11, T(E32) = dEy1 +b%E»s, T(E12) = bE;3, T(E12) = aEy +cEy,
whered > 0,b> ¢ > 0. Then T is a sum of three extreme operators.

PRrOOF: From T > 0, we have

i9 2 . . e
T(rel re )= (1+dr + arsiné brcos0+zcrsm0) >0

br cos@ — icrsin b%r?
for all r > 0, @ € R. Therefore, we must have
14+dr® +arsinf > cos’ 6 ++*sin’8 with ~=c/b

and hence

2

a 2 1-92 a
— >
(r+2dsm0) +( 7 4d2)sm 0>0

for all »r > 0, 8 € R. Thus, we obtain 1 — 42 > a%?/4d. When
1 — % = a?/4d, it is clear that F = Span {Zz* | T(£7*) is extreme}
has dimension at least 3. By Lemma 3.7, T is a sum of two extreme
operators in this case.

Next, we consider the case with 1 — 42 > a?/4d. Let a = d —
a®/(4(1 —+%), S =aV o0S;, z = ez, V = E12. Then it is routine
to verify that Ty = T — S is positive and the corresponding F' has
dimension at least 3. Therefore, Lemma 3.7 applies so that T} is a
sum of two extreme operators. Thus, T is a sum of three extreme
operators.

LEMMA 3.9. Let T be a positive linear operator on E with T(Ey;)
= En, T(Ey) = diEny + d2 Eyz, T(Erz) = a1Eny + bEyz, T(Enp) =
a2E;, + cEyy where b > ¢®. Let ¥, = 1{”2 (1,re~t*)T r, >0,

rn — 0 and A\, = max{\ > 0 | AT} < T(Fpa})}. FdimF =1
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where F = Span {Zz* | T(Z7*) is extreme} and if A, — 0 then dy =
b? and a; = 0.

PROOF: Note that

T(Znd7) — AndnTp =
1— A +dir2 + ksin(an + 00)'7',, rn(bcosan + icsinay,) — Aneion
Tn(bcos an — icsinay) — Ape™*o" (d2 — Ap)r2

is positive and whose determinant is zero for all n by the choice of A.
Thus, we obtain Apg(Tn,an) = f(ra,an), where

f(rn,an) =d2(1 + dlr?, + ksin(an + 6o)rn) — b% cos? an — ¢? sin? an,

g(Tn,an) =1+d2 + dlri + ksin(a + 0g)rn — 2bcos? an — 2csin? an,

where k = y/a? + a2, sin6y = a;/k, cosby = az/k. From T > 0,
we have f(r,a) > 0 for all r > 0, a € R and hence ¢(rn,ax) is also
positive for all n. Since A, — 0 and ¢(rn, an) is bounded above, we
must have f(rp,a,) — 0. Now, from f(r,,an) = d2 — b + (b% —
c2)sin2 an + h(Tn, @y )Ty, we must have d; = b2 and sina,, — 0. Note
that b2 # ¢? since otherwise f(r,a) < 0 for r > 0, « € R. By taking a
subsequence, we may assume a, — 0 or a, — 7. We assume a, — 0
since the case with a, = 7 can be proved in exactly the same way.

Now, from f(r,a) = dad;r? + doksin(a + 6p)r + (b2 — ¢?)sin’ a > 0
for all r > 0, @ € R we must have sinfy =0, i.e., a; = 0.

THEOREM 3.10. Let T be a positive linear operator on E with
dim(KerT) < 1. If dimF = 1 where F = Span {£z* | T(ZZ*) is
extreme}, then T is a sum of three extreme operators.

PROOF: By applying Lemma 2.1 and by applying a map of the
form S,4, we may assume T(Ey) = Eyy, T(Ey) = diEqy + d2 By,
where d;, d2 > 0. Note that T(z'z*) # 0 for all 2 # 0 since otherwise
dim(T(E)) < 1.

We apply unitary maps of the form S, so that S = S, 0T 0 S,

satisfies S(E11) = En, S(E22) = (Cg ;2)’ S(Er) = (ab1 g)’
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a 0
define A\; = max{\ > 0 | \Z7* < T(Zz™*)}. Then A; # 0 for all Z # 0.
Let Ao =min{)\; | 7 € C?,7*7 = 1}. '
First, consider the case of Ao = 0andfind 7, = 11- =(1,rpetn)T

such that the corresponding A, approaches to 0. Note that T — 0
in this case since S(ZnZ}) — A\nZnZs are all extreme and dim F = 1.
Thus, we may apply Lemma 3.9 to conclude d; = b* and a; = 0 and
hence S is a sum of three extreme operators by Lemma 3.8. Therefore,
T is a sum of three extreme operators.

Next, we consider the case with Ao # 0. It is clear that T > AgI
where I is the identity operator. Let S = T—A¢I. Then S(E1;) = (1—
Xo0)E1 and S(Z73) is extreme for some oy € C2. If ZoZy # E11, then
S is a sum of two extreme operators by Theorem 3.4 and hence sois T'.
If 2025 = E11, then we must have A\ = 1 and hence S(E;;) = 0, from
which we obtain dim(Ker S) > 3 with E;,, E,, € Ker S. Therefore,
T = X\I + S and hence T is a sum of three extreme operators by
Lemma 3.6.

S(E’u) = (:12. CZ) where we have b > ¢ by the choice of 7. We

EXAMPLE 3.11. Let T(Ell) = 2E11, T(Egz) = I T(Elg) Ei +
E,,, T(E12) =E; +E'12 Then it is routine to verify that dim F' =1
and Ao = 1 where )¢ is as defined in TIieoremi 3.10. Let S=T-1,
then S(E11) = S(E22) = S(E12) = S(E12) = Ey;. By Lemma 3.3,
S must be a sum of two extreme operators. In fact, wij_ian verify
that S(A) = (P,A) = Trace(PA) where P = ( L i ) The

2
eigenvalues of P are 1+ = \/-, - f and the corresponding eigenvectors

e (435)". (4 )".

1

1—i
Let U = l; V2 . Then
2

-
V2
0, b+ci)U,._(“’;d+% “z“-"—‘fﬁ)
: - a—d b—c atd btc .
b—c d 3 —Tzcz -%— 5

Thus, we have S = (1+\/L2-)S;oU+(1——L)VOS,;;0Uwhere
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Z=2¢€1, W = €2, V = Ej3. Therfore, T is a sum of three extreme
operators.

LEMMA 3.12. Let T be a positive linear operator on E. If T(z*)
is positive definite for all £ # 0, then T > Aol for some Ao > 0 such
that (T — A\oI)(Z0Zy) is extreme for some 7o € C? with T§zo = 1.

-PROOF: For 7 # 0, we define A; = min{A > 0 | A is an eigenvalue
of T(Z7*)} and let A\ = min{)\, | ¥ € C%,7*Z = 1}. We claim that
Mo # 0. To prove the claim, suppose A = 0 and let &, be such
that %%, = 1 and the corresponding eigenvalues A, satisfy An, < .
By taking a subsequence when necessary, we may assume Zp, — Zg
for some 7o € C? with £§Zo = 1. Let Z, be the corresponding unit
eigenvector of T(Z,Z}). Again, we assume Z, — Zo by taking a
subsequence. Now, note that A\, = ZxT(Z.7%)7n — Z3T(Zo0Zg)20,
ie. ZgT(ZoZ§)Zo = 0 with Z5Zzo = 1. Therefore, we must have 0 is
an eigenvalue of T(£o&g), which is a contradiction, and the claim is
proved. Finally, note that T(ZZ*) > A\,ZZ* > \oZZ* for all ¥ € C?
and hence T > A\ol.

THEOREM 3.13. Let T be a positive linear operator on E such
that T(zz*) is positive definite for all £ # 0. Then T is a sum of four
extreme operators. :

PROOF: By Lemma 3.12, there exists A\g > 0 such that T' > A¢J and
(T — XoI)(ZoTy) = af€* for some T§To = &€ = 1. Note that o #0
since T(£oZy) is positive definite and the Ker S # {0} where S =T —
MoI. Now, if dim F = 1 where F = Span {ZZ* | S(Zz*) is extreme}
then we apply Theorem 3.10 so that S is a sum of three extreme
operators. If dim F' > 2, then we can apply Theorem 3.4 to conclude
S is a sum of two extreme operatrors. Therefore, T is a sum of four
extreme operators in any case.

REFERENCES

1. Moon, B.S., Extreme Positive Operators on the Ordered Space of 2 x 2 Her-
mitian Matrices, Comm. Korean Math. Soc. (1990) (to appear).



A DECOMPOSITION OF POSITIVE LINEAR OPERATORS 25

2. , Ideal Theory of Ordered Locally Convex Spaces, J. Korean Math.
Soc. 14, No. 2 (1979). '
3. Stormer, Erling, Positive Linear Maps of Operator Algebras, Acta Math.

110 (1963), 233-278.

Korea Atomic Energy Research Institute
Taejon, 302-353, Korea



