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on the Ordered Space of 2 x 2 Hermitian Matrices 

into a Sum of Four Extreme Operators
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1. Introduction

We denote E to be the real ordered space of all 2 x 2 Hermitian 

matrices with the positive cone consisting of all elements having non­

negative eigenvalues. A linear operator T on JE is said to be positive 

if T(P) > 0 for every P > 0, and T is extreme if S = XT for some 

A > 0 whenever 0 < S < T.

It is proved in [1] that a positive linear operator T on 乃 is extreme 

if and only if it is unitarily equivalent to a map of the form S호 for 

some C2. The linear operator S》is defined by = ww* for

every £ € C2 where Wi = :仙幻, i = 1,2.

We know by the Krein-Milman theorem that every positive linear 

operator on 乃 is a convex combination of extreme operators. But in 

this paper, we prove that every positive linear operator on E can be 

decomposed into a sum of four extreme operators. Note that the di­

mension of E is four and hence the vector space of all linear operators 

on E has dimension sixteen.

In the following, we denote Ea for €계\ En for + @2 聲 and 

E12 for ie^e^ — where e\ = (1,0)丁, = (0,1). The unit 

matrix En + E22 will be denoted by I while I will also be used for 

the identity operator on E. Recall that every element of E can be 

written as Xxx* + /j〒고 for some A, /z € R and an orthonormal set 

{£, y} of eigenvectors. A linear operator T is determined if T(示命) is 

_ ( 1 reie\ .
defined for every :F € C2 and hence if T I re-ie r2 ) 仏 己세116^ f°r 

all r > 0, G R along with T(£?22).

If Q is an arbitrary nonsingular matrix, then we define a linear 
operator by Sq(A) = QAQ^ for all A E. Note that Sq1 = Sq-i.
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When 17 is a unitary matrix, we write simply U instead of Su- In 
case U = ( 서 匕?ia ) for a € R, then we have

sv(ka . btci)=u(ka . 서背)少

— cz a ) \b — ci a J 

_ ( a (b + ci)eia \

— y (ft — cz)e“ta d J

for all a, 6, c, d G R. We write this operator as Sa instead of Su or 

U. Note that we have S'；1 = SLa.

THEOREM 1.1. Let T be a positive linear operator on E. Then T 

is extreme if and only if there exist unitary matrices U, V and z E C2 

such that T = U o Sz eV orT = UoSzoV.

COROLLARY 1.2. Let T be a nonzero positive linear operator on 

E. Then T is extreme if and only if T maps every extreme point of 

E to either 0 or another extreme point.

The proof of Theorem 1.1 and Corollary 1.2 above are given in [1; 
5.1, 5.2]. We quoted them here as they are used in the following 

sections.

COROLLARY 1.3. Let Q be an arbitrary 2x2 matrix, W be a 

unitary matrix, z,wE C2, and T = S^oW o S示. Then

(a) Sq = Ui 令 S조 oV자 or Sq = o S2 o T&

(b) T = U2 o 0V2 or T = Vq. 令 Sq o V》

for some unitary matrices l&, T4, i = 1,2, and x, y E C2.

PROOF: Note that both Sq and T map extreme points to zero 

or other extreme points. Therefore, they are extreme operators by 

Corollary 1.2 and hence Theorem 1.1 applies.
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2. Preliminaries

In this section, we consider some of the elementary results that are 

necessary for the proofs in section 3. We also prove that a positive 

linear operator T on E with dim(KerT) > 2 is a sum of four extreme 

operators.

We quote the following two Lemmas from [1] without proof as they 

are used frequently in what follows.

LEMMA 2.1. If {示, y} is a linearly independent set in C2, then there 

exists a nonsingular matrix Q such that Sq(示示*) = E11} Sq(히**) = 
^22-

LEMMA 2.2. Let T be a positive linear operator on E with 

dim(Ker T) = 2. Then there exist unitary matrices U and V such 

that for S = UoToV,we have (Ker S)° = Span {£:?*, 苑’*}, S(E) = 

Span {£F*, ww*} for some x, y,z,wE C2.

LEMMA 2.3. Let T be a positive linear operator on E with T(xx*) 

= 人:eCC* for all x E C2 where〈 is fixed, then there exist unitary 

operators U, V2 and F, w € C2 such that T = Vi o o W + V2 o 

S고 o U.

PROOF: We define a linear functional on E by /(££*) = Xx where 
"■"i'■빼

Xx is from T(££*) = Then f is clearly positive and hence there 

exists Q < P E E such that f(A) = (P,A) for all A G E. We write 

P = a7777* + 유후 where {77, is orthonormal and let U = (리)*, 

then UPU허 = aEn + 0乃22. Now, we have T(示$*) = (P, M*) 혀 = 

(FP£)e? = :F* 으 (aEii + I3E22)U~휴* = 7*(aEu + 0E22河랴 = 

(이?/1|2 + |이!시2)艾*, where y = Ux. Let S = T ol7*.

Note that we may assume f= 1 and we can take if G C2 such 

that {^ff} is orthonormal. Let V = (gi/)*, then V o S'(:F£*) = 

(a|a；i|2+^|x2|2)£;ii = aS^xx^)+/3WoS^xx^) where z = ei, w = 62, 

W = E^. Therefore, we have T = V* o 5》o 十 V* o VT o S'가 o D『.
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THEOREM 2.4. Let T be a positive linear operator on E with 

dim(KerT) = 3. Then T is a sum of four extreme operators.

PROOF: Let T(^£*) = AXP where 0 < P E E. We write P = 

and define 7i(££*) = Xx푸, 1}(示F*) = for all x G C2.

Then we clearly have 0 < Ti, T2- By Lemma 2.3 above, both Ti and 

T2 are sums of 2 extreme operators and hence T is a sum of four 

extreme operators.

LEMMA 2.5. Let S be a positive linear operator on E with S(E) = 

Span{En,E22} and S(jEi2)= 5(^12)= 0. Then S is a sum of four 

extreme operators.

Proof： Let S(JEn) = aiEn + 시仏乃22, *S(」E>2)= (上3』머 1 + 014E22 
where a, > 0, i = 1,2,3,4. Then for every x G C2, we have

S(£F) = 十 I：시2乃22) = |幻|2日(乃ii) + |：z시2日(乃22)

= |흐1|2(시山呂11 + 어2乃22)+ |：Z시2(아3乃11 + 사』22) 

= (aiSr + a2 V O 十 a3 V O S그 + 어4日巾)(%*)

with z = ei, w = e2j and V = Ew Therefore, we have S' = aiSr + 

0C2V o S호 + ot^V o S而 + S고.

THEOREM 2.6. Let T be a positive linear operator on E with 

dim(KerT) = 2. Then T is a sum of four extreme positive opera­

tors.

PROOF: By Lemma 2.2, there exist unitary operators U and V 

such that for T\ = l『 0 T o V, we have (KerTi)° = Span {M*, 才*} 
and Ti(B) = Span{£F*, ww*}. Now by Lemma 2.1, there exist Sq, 

Sr such that Sq(Eh) = xx*^ Sq(日22) = 死*, Sr(zz*) = E*ii, 

Sr(ww^) = E22- Let S = Sr oT\ o Sq then 5(乃) = Span {£^11,^22} 

and (KerS)° = Span{£?n,乃22}- Therefore, by Lemma 2.5, S is a 

sum of four extreme operators and hence so is T.
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3. Decomposition of Positive Linear Operators

In the previous section, we proved that any positive linear operator 

on E with dim(Ker T) > 2 can be decomposed into a sum of four 

extreme operators. In this section, we prove that the same holds 

when dim(Ker T) < 1.

Lemma 3.1. Let T be a positive linear operator on E with T(En) 

= AEn, T(£?22)= 乃22? T(JE?i2)= Ei2y T(£?i2)= 0 where A > 1. 

Then T is a sum of two extreme operators.

PROOF: Let a = |(A + a/A2 — A), 0 = 去(A —、/A2 — A), then we 

have a/3 = 스, (A — a)(l — /3) = |,0<a<A, and 0 < 0 < |. We 

define

b + ci 

d

aa

— ci)

(1 _ a)a

— ci)

、、/해 (b + ciy\
0d )

y/해 (b + ci)\
(1—" )’

then it is clear that T = 十 Sw.

LEMMA 3.2. Let T be a positive linear operator on E with T(JEn) 

= Eh, T(乃22) = 乃22, T(£?i2)= cEi2f 므(巧12)= "12 wherec2+d2 羊 

0. Then T is a sum of two extreme operators,

PROOF: Note that we must have c2 + d2 < 1 since T > 0. First, 

we consider the case where c2 + cf2 = i. Let c = cost, d = sinr, and 

S = T o I7r, then it is routine to verify that S^En) = E&, i = 1,2, 

S(Ei2)= £?i2, S(f?i2)= 0. Therefore, S is a sum of two extreme 

operators by Lemma 3.1 and so is T. _______

Next, we consider the case with c2 + J2 < 1. Let t = l/\/c2 + c?2, 

cost = ic, sinr = dt, and T\ = tT then Ti(En) = tE— i = 1,2, 

꼬1(乃 12)= cos7\E?i2, Ti(E\2)= sintE*i2. If *S = o Ur, then 

S(Ei2)=」E?i2, 5’(乃12)= 0, S(Eii) = tE& i = 1,2. Let £프 = 
(、%, 1 入/?), Si = S2 o S, then Si(Eii) = XEn, 5사) = 乃22, 
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日:1(乃12)= E12, Si(Ei2)= 0 with A = t2. Therefore, Si is a sum 

of two extreme operators by Lemma 3.1 and hence T is a sum of two 

extreme positive operators by Corollary 1.3.

LEMMA 3.3. Let T be a positive linear operator on E with 

dim(KerT) < 1. If T(En) = Eu, i = 1,2, T(Ei2)= =12? 끄(乃12) = 

dEi2 where 0 < \d\ < c < 1, d E then T is a sum of two extreme 

operators.

PROOF: Note that if c = 1, then T = di + (1 — d)Z, a sum of 

two extreme operators. Thus, we assume c < 1. Let a = |(1 — 

cd _ \/(l — cd)2 — (c _ c?)2), /3 = |(I_cd+ 주/(1 — cd)2 — (c — cQ2), 

7 = 으흐흐. Note that (1 — cd) > (c ~ d) > 0 from (1 — c)(l + d) > 0 

and that 0 < a, /? < 1, a/? = 72, (1 — a)(l — /3) = (c — 7)(d — 7). We 

define

S(Eii) = aEn, S(£?22)= 0乃22, 日(乃12)= 7乃12, 

日(乃12)= —7乃12, 호(乃11) = (1 — 사0乃11?

2?(乃22)= (1 — 으)乃22, 요(乃12)= (仁 — 7)乃 12, 2?(乃 12)= (거 + 7)乃 12*

Then we have

여 서 1 reie \ _ ( a 7r(cos 아 —라 이) )
(re—애 r2 J 그(7r(cosd + isin0) 0r2 J

P ( 1 reie\ _ 1 —a (c — 7)r(cos0 + isin0)
(re—必 r2 J - (c _ 7)r(cos0 — isin이) (1 — /3)r2

for all r > 0, 0 G R. Now, note that S and R are of the form Sz from 

ap = 夕2, (1 — a)(l — 0) = (c — 7)2. Therefore, T = 72 + S is a sum 

of two extreme operators.

THEOREM 3.4. Let T be a positive linear operator on E with 

dim(KerT) < 1. If dimF > 2 where F = Span{xx* | T(M*) is 

extreme}, then T is a sum of two extreme operators.

PROOF: Let {xx*,yy*} be a basis of F with x^x = y^y = 1 and 

let T(M*) = £F*, T(yy*) = ww*. Note that {£?*, ww*} is linearly 
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independent since otherwise dim(T(£?)) < 1, i.e. dim(Ker T) > 3. 

We apply Lemma 2.1 to find Sq and Sr such that Sq(乃ii) = 

Sq(E22)= j7#*, Sr(zz^) = JE?ii, Sr(ww*) = E22, and let S = Sr o 
T o Sq. Then we have S(JEa) = 瓦己 i = 1,2 and hence S(Bi2), 

S'(乃 12)€ Span{日12,乃12} from S > 0.

Let *S(£》2)= aEi2 + bEw 6(^12) = c乃 12 + <=12, where a, 5, c, 
d 6 R and let tan2r = —2(ac + M)/(c2 + d2 — a2 — b2), Si = S' o Ur- 

Then

a cos r + c sin r + i(b cos r + d sin r)

=iA(—asinr + ccosr + i(—bsinr + d cos r))

for some real A. Note that the left hand side of the above is the 

(1,2)-component of *Si(乃 12) and the right hand side is iX times the 

(1,2)-component of Si(-Ei2). Therefore, there exists a such that S2 = 

S(y o Si = Sa 0 S oUr satisfies 51(•日 12) = c=i2, 日2(乃12)= 0乃12 with 

a, /? € R. Note that we could take r = a = 0 when a = b = c = d, 

and r = 끄 when c2 + cf2 = a2 十 b2. We may assume |a| > |0| by 

applying 하즐 if necessary and also assume a > 0 by applying Un. 

Now, note that we cannot have a > 1 since S2 > 0 and hence we 

have 0 < |^| < a < 1. Therefore, by Lemma 3.3, S2 is a sum of two 

extreme operators and hence so is T by Corollary 1.3.

Example 3.5. Let T(Ea) = \/5刀五, i = 1,2, T(Ei2)= 乃 12, 

T(£?i2)= E12- Then we 시early have 끄 之 0 and dimF > 2. As in the 
proof of Theorem 3.4, we take r = j since we have c2 -bd2 — a2 — 62 = 0 

in this case. Let S = T o UT, then *9(乃九) = i = 1,2,

S(E12) = v으旧 12? 5(JSi2)= 0. Thus, we can write S = 去1 + 볘 

where I is the identity operator. Therefore T = ^Io{7_r+^|Iol7_r, 

i.e. T is a sum of two extreme operators.

LEMMA 3.6. Let T be a positive linear operator on E with T(En) 

= 0. Then T is a sum of two extreme operators.

PROOF: Note that T(Ei2)= 꼬(乃12) = o since T > 0 and hence 

we have dim(T(乃)) = 1. Let T(£：22)= P where P > 0 and let UPU허 
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be diagonal with a unitary matrix U. If S’ = 17 o T, then S(£?22)= 

diEn + 成乃22 for some di, 成 之 0. Thus, we have S = V o

where £ = 昆, V = E\2 and hence T is a sum of two extreme operators.

LEMMA 3.7. Let T be a positive linear operator on E and F = 

Span {示示* | T(示？*) is extreme}. If dim F > 3, then T is a sum of two 

extreme operators.

PROOF: In view of Lemma 2.1 and Corollary 1.3, we may as­

sume T(En) = En, T(E22)= 及22, 꼬(乃12)= =12, 꼬(乃12)= 
(0 ceir\ . . .

ce-ir q I with c > 0. Here we have applied a unitary map of the 

form SQ in front of T to obtain the form in T(乃 12) and T(E12)- Note 

that we have c2(l + |cosr|) < 1 since T > 0. Now, from dimF > 3, 

we have

T ( 1 V 
으(re— r2

1 rc(cos 0 + eir sin 0)

(cos 0 + e7lT sin 0) r2

is extreme for some r / 0. Therefore, c2(l +sin26 cost) = 1 for some 

유 6 R, which implies c2(l 十 | cosr|) = 1.

Note that T is a sum of two extreme operators if and only if so is 

T and hence we may assume 0 < r < %. First, we consider the case 

0 < r < so that cos r > 0.

Let

V = 쉬〕
e『⑵ \
_e디2고 ) ’

and S = V o T o U, Then S(En) = En, i = 1,2, 5(乃 12) = 乃 12, 

S(Ei2)= tEn where t = tan(r/2). Note that 0 < < < 1. If t = 1, then 

S is extreme and if f < 1 then S = Al + (1 — A)I where A = (1 +《)/2. 

Therefore, S' is a sum of two extreme operators and hence so is T.

Next, we consider the case with < t < 7r. We repeat the same 

process with

v=&(〕거;:,)
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to obtain S^Ea) = Ea, i = 1,2, S(Ei2)= 乃 12, 日(乃12)= cot(r/2)£/i2. 

Thus, by a similar argument, S' is a sum of two extreme operators and 

hence so is T,

LEMMA 3.8. Let T be a positive linear operator on E with T(En) 

= 乃 11, 끄(乃22)= dEn+b2E22, T(Ei2)= b乃 12, 꼬(乃12)= dEll+(石12 

where d > Q, b > c > 0. Then T is a sum of three extreme operators.

PROOF: From T > 0, we have

rp / 1 rete \ _ / 1 + dr2 + ar sin 0 br cos 0 + icr sin 0
\re~te r2 ) - y br cos0 — icr sin0 b2r2 

for all r > 0, 0 € R. Therefore, we must have

1 + dr2 + ar sin 0 > cos2 0 + sin2 0 with 7 = c/b

and hence 

( a 그\ 2(r +하 si") + %）어어스0
for all r > 0, 0 € R. Thus, we obtain 1 — 72 > a2/4d. When 

1 — 72 = a2/4J, it is clear that F = Span {xx* | T(M*) is extreme} 

has dimension at least 3. By Lemma 3.7, T is a sum of two extreme 

operators in this case.

Next, we consider the case with 1 — 72 > a2/4cL Let a = d — 

cz2/(4(1 — 72)), S = aV o S之, 之 = 匕2, V = 乃 12. Then it is routine 

to verify that Ti = T — S is positive and the corresponding F has 

dimension at least 3. Therefore, Lemma 3.7 applies so that 7i is a 

sum of two extreme operators. Thus, T is a sum of three extreme 

operators.

LEMMA 3.9. Let T be a positive linear operator on E with T(JE?n) 

= 乃 115 꼬(早22)= diEn + 成乃22? 꼬(乃12)= ⑦1•日11 + =12, 꼬(乃12)= 

0.2En + cE\2 where 62 > c2. Let xn = 히수 2 (l,*"1 아)후, rn > 0, 

G — 0 and An = max{A > 0 | Xxnx^ < T(xnx^)}, If dimF = 1 
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where F = Span {xx* | T(£x*) is extreme} and if An — 0 then(I2 = 

b2 and ai = 0.

Proof： Note that

T(示n= _ Xnxnx^ =

1 — An + 거 + k sin(an + 0Q)rn rn(6cosan + icsinan) — An甘아 
rn(bcosan — icsinan) — Xne^tan (成 — An)r^

is positive and whose determinant is zero for all n by the choice of An. 

Thus, we obtain Angr(rn, an) = /(rn,an), where

= 成(1 + 거17《 + ksin(an + @o)G)— 우 cos2 an — 서 sin2 an, 

^(rn,«n) = 1 + 成 + dir그 + k sin(a + d())rn — 26cos2 an — 2csin2 an,

where k = sin^o = 이i/A, cos0q =(째/⑧ From T > 0,

we have /(r,a) > 0 for all r > 0, a 6 R and hence 5(rn,an) is also 

positive for all n. Since An —> 0 and g『(rn,ctn) is bounded above, we 

must have /(rn,an) — 0. Now, from /(rn,an) = 서么 一 b2 + (&2 — 

c2) sin2 an + h(rn, an)rn, we must have 成 = &2 and sinan ―스 0. Note 

that ft2 / c2 since otherwise /(r, a) < 0 for r > 0, a € R. By taking a 

subsequence, we may assume an —> 0 or an -느 7r. We assume an — 0 

since the case with an = 冗 can be proved in exactly the same way.
Now, from /(r, a) = 成石甘2 + 成그 sin(a + @o)r + (b2 — c2) sin2 a > 0 

for all r > 0, a G R we must have sin = 0, i.e., = 0.

THEOREM 3.10. Let T be a positive linear operator on E with 

dim(KerT) < 1. If dimF = 1 where F = Span {xx* | T(M*) is 

extreme}, then T is a sum of three extreme operators.

PROOF: By applying Lemma 2.1 and by applying a map of the 

form S人, we may assume T(En) = En, T(E》2)= 시1 乃 11 + 成乃22 

where c?i, 成 > 0. Note that T(££*) / 0 for all x / 0 since otherwise 

dim(T(E)) < 1.

We apply unitary maps of the form 5》so that S = ST o T o Sa 
satisfies S(En) = En, S(E22) = ：), S(E12) = g1 ：),
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S(E12) = (셰 으 ) where we have &2 > c2 by the choice of r. We 

define Xx = max{A > 0 | Xxx* < T(M*)}. Then Ax / 0 for all £ / 0. 

Let Ao = min{Az | x € C2,x*^ = 1}.

First, consider the case of Ao = 0 and find xn = 리스유 (1, rne”,Qfn)흐 

such that the corresponding An approaches to 0. Note that rn —> 0 

in this case since S(xnx^) — Xnxnx^ are all extreme and dimF = 1. 

Thus, we may apply Lemma 3.9 to conclude 己么 = b2 and ai = 0 and

hence S is a sum of three extreme operators by Lemma 3.8. Therefore, 

T is a sum of three extreme operators.

Next, we consider the case with Ao / 0. It is clear that T > AqI 

where I is the identity operator. Let S = T—XqI. Then S(Bn) = (1 — 

人0)乃11 and S(xxq) is extreme for some xq G C2. If xqXq / Bn, then 

S' is a sum of two extreme operators by Theorem 3.4 and hence so is T. 

If xqx^ = £?n, then we must have Ao = 1 and hence S(En) = 0, from 

which we obtain dim(Ker S) > 3 with E12, E12 G Ker S. Therefore, 

T = AqI + S and hence T is a sum of three extreme operators by 

Lemma 3.6.

Example 3.11. Let T(En) = 2En, T(E22) = I, T(E12) = Eu + 

E12, T(Ei2)= Eu + E12. Then it is routine to verify that dimF = 1 

and Ao = 1 where Ao is as defined in Theorem 3.10. Let S = T — I, 

then S(En) = *S(£$2)= S(Ei2)= »S(乃 12) = J모m By Lemma 3.3, 

S must be a sum of two extreme operators. In fact, we can verify 

that S(A) = (P,A) = Trace(PA) where P = (丄 보). The 

eigenvalues of P are 1 + ^ , 1 —and the corresponding eigenvectors 

허汚(븡l;%) ’(픙프’-;%) •

Let U = 、『\ I. Then
l-i 

2 
l-i

Thus, we have S = （그 + 브） 日必 아 H + (1-브)Vo 아 o U where
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F = ei, w = 62, V = 乃12. Therfore, T is a sum of three extreme 

operators.

LEMMA 3.12. Let T be a positive linear operator on E. If T(M*) 

is positive definite for all $ 手 0, then T > Aol for some Ao > 0 such 

that (T — Aol)(^o^o) is extreme for some xq G C2 with XqXq = 1.

PROOF: For 示 尹 0, we define Xx = min{A > 0 | A is an eigenvalue 

of T(xx*)} and let Ao = min{Ax | x E C2,示*示 = 1}. We claim that 

Ao / 0. To prove the claim, suppose Ao = 0 and let xn be such 

that x^xn = 1 and the corresponding eigenvalues An satisfy An < ■“. 

By taking a subsequence when necessary, we may assume xn —> 휴 
for some xq G C2 with XqXq = 1. Let zn be the corresponding unit 

eigenvector of T(示n져;). Again, we assume 處 — %) by taking a 

subsequence. Now, note that An = z^T(xnx^)zn —> ZqT(xqx^)zq^ 

i.e. ZqT(xqXq)zo = 0 with ZqZq = 1. Therefore, we must have 0 is 

an eigenvalue of T(xqXq\ which is a contradiction, and the claim is 
proved. Finally, note that T(M사") > Xxxx^ > Xqxx^ for all x e C2 

and hence T > XqL

THEOREM 3.13. Let T be a positive linear operator on E such 

that T(M*) is positive definite for all x Q. Then T is a sum of four 

extreme operators.

PROOF: By Lemma 3.12, there exists Ao > 0 such that T > AqI and 
(T — Ao/)(^o^o) = aCC for some XqXq = 프Q = 1. Note that a 0 

since T(xqx^) is positive definite and the Ker S 羊 {0} where S =』T - 

Ao I. Now, if dim F = 1 where F = Span {xx^ | &(££*) is extreme} 

then we apply Theorem 3.10 so that S is a sum of three extreme 

operators. If dimF > 2, then we can apply Theorem 3.4 to conclude 

S is a sum of two extreme operatrors. Therefore, T is a sum of four 

extreme operators in any case.
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