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Chain Recurrence in Persistent Dynamical Systems

Dong Pyo Chi, Ki-Shik Koo, Keon-Hee Lee and Jong-Suh Park

ABSTRACT. The purpose of this paper is to study the chain 
recurrent sets under persistent dynamical systems, and give 
a necessary condition for a persistent dynamical system to be 
topologically stable. Moreover, we show that the various recur­
rent sets depend continuously on persistent dynamical system.

The abstract theory of dynamical systems distinguished various re­

currence properties such as periodicity, Poisson stability, nonwander- 

ingness, chain recurrence, etc. The weakest property among them is 

the property of a point to be chain recurrent.

In [3], Hurley analysed the chain recurrent sets under topologically 

stable dynamical systems, and Lewowicz [5] introduced the concept 

of persistence of a dynamical system which is weaker than that of 

topological stability.

The purpose of this paper is to study the chain recurrent sets un­

der persistent dynamical systems, and give a necessary condition for a 

persistent dynamical system to be topologically stable. LU. Bronstein 

and A.YA. Kopanskii [1] introduced the concepts of weakly nonwan­

dering set and chain recurrent set for a disperse dynamical system (or 

a dynamical system without uniqueness) and said that, in general, it 

remains unknown whether or not the weakly nonwandering set is equal 

to the chain recurrent set. We claim that for a dynamical system (with 

uniqueness) the weakly nonwandering set is properly contained in the 

chain recurrence set. Moreover, Ombach [7] showed that the various 

recurrence mappings (such as a, a;, Q, CR, etc.) are continuous at f 

if the system f has the P.O.T.P. (pseudo orbit tracing property) and 

is expansive. Finally we prove that the various recurrence mappings 

are also continuous at f if the system f is persistent.
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We consider homeomorphisms acting on a compact metric space. 

Unless otherwise mentioned, we let X denote a compact metric space 

with a metric d. Let denote the collection of all homeomor­

phisms of X to itself topologized by the C°-metric

do(f,g) = sup{J(y(:z:), 이(x)) : X e X}.

A homeomorphism f on X is said to be topologically stable if for any 

£ > 0 there exists 6(e) > 0 such that if d(KJ\g) < 6 then there exists 

a continuous map h : X — X satisfying hg = fg and do(h,lx) < 

e, where lx is the identity map on X. The map h is called the 

semiconjugacy from g to f. We say that f E H(X) is expansive if 

there exists e(/) > 0 such that if d(/n(x), /n(y)) < e for every n € Z, 

then x = y. Such numbers e(J) are called expansive constants. A 

homeomorphism / on X is called a(or 0)-persistent if for any e > 0 

there exists 5(匕) > 0 such that if <io(/,ff) < 6 and x 三 X, then there 

is y E X satisfying

d(fn(y),gn(x)) < e (or </"(=),g"(y)) < e),

respectively, for all n G Z.

LEMMA 1. Any topologically stable homeomorphisni is a(0)- 

persistent.

PROOF: Let f e be topologically stable, and let € > 0 be 

arbitrary. Then we can choose 6 > 0 such that if do(J\g) < 6 then 

there is a continuous map h : X —으 X with hg = fh and lx) < 引 

For any x E choose y E X with h(y) = x. Then we have

거CfnGr),g"(y)) = 에f"(AG/)),gnG/))

= 서(奴/거⑵))川 nG/)) < 乞

for all n € Z. This means that f is ^-persistent. For any :r G X, by 

letting A(x) = y, we have

d(fn(y),ffn(x)) = d(fn(h(x)),gn(x))

= d(h(gn(x)\gn(x)) < e,
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for all n € Z, which implies that f is a-persistent.

Throughout this paper, it will be noted that a persistent homeo­

morphism means a(0)-persistent homeomorphism. The converse of 

the aobve lemma does not hold (See [5]). The following theorem 

gives a necessary condition for an a-persistent homeomorphism to be 

topologically stable.

THEOREM 2. An a-persistent homeomorphism is topologically sta­

ble if it is expansive.

PROOF: Let f G H(x)be a-persistent, and let e(/) be an expan­

sive constant for f. Choose e > 0 satisfying e < e(/)/4. Given e > 0, 

there exists 5 > 0 such that if do(f,g) < 6, then for any x E there 

is y E X satisfying

거(/nG/)乃nO)) < 匕/2

for all n € Z. Define a map h : X X by h(x) = y, where y is an 

element in X chosen by the property of persistence of f as the above. 

Then the map h is well-defined. In fact, let 之 be another element 

in X such that d(yn(2：),grn(:r)) < e/2 for all n E Z. Then we have 

서(/n(?/),/n(2：)) < 乞 for all n e Z. Since f is expansive, we get y = z.

Now we show that the map h is continuous. Put h(x) = y and 

A(:r') = y', and let A > 0 be given. Since f is expansive, we can 

choose N such that if <Z(/nG/),/n(y')) < e(/) for all —N < n < N 

then d(y,yf) < A. Suppose not. Then, for each 2V > 1, there exists 

a— bpq G X such that

d(fn(aN), fn(J)N)) < e(/) and d{aN, bN) > A,

for all —7V < n < TV. Consider the sequences {(=} and {b^}. Since X 

is compact, we have(〕小 — a and by — & in A". Then we get d(a, b) > 

A and d(/n(a),/n(&)) < e(/), for all n G Z. This contradicts to the 

expansiveness of f. Since g : X — X is continuous, given N, there 

exists 77 > 0 such that if c?(:r,:r') < 77 then d{gn{x)^gn{x,y)< e(/)/2 

for all —N < n < N. Consequently we have

에/"(y),/nG/')) 幻/(r(y),改Gr)) + 己(改(z),gn(O)

+ d(g"(:r'),n?/'))<e(/),
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if d(<x1x,) < T)and —N < n < N. Thus we obtain =

< A. By now, we have shown that for any A > 0 

there exists 77 > 0 such that if d^x^x1) < 77 then d{h(x\ h^x9)) < A, 

i.e. h is continuous.

Moreover, for any x E there exists y E X satisfying 己(/저’1 (?/), 
^n+1(x)) < e/2 for all n G Z. Then we get 7i(g『(:r)) = f(y) = f(h(x)), 

by the definition of h. Hence we have hg = fh on X. This completes 

the proof of theorem.

COROLLARY 3. An a-persistent homeomorphism is ^-persistent if 

it is expansive.

We say that two homeomorphisms f and g are topologically conju­

gate if there exists h E H(X) satisfying hg = fh. The homeomor­

phism h is called a topological conjugacy between f and g.

In the following theorem, we see that the a (or /^-persistence is 

invariant under a topological coxyugacy.

THEOREM 4. Any homeomoiphism which is topologically conju­

gate to an a(or 0)-persistent homeomorphism is a (or 0)-persistent, 

respectively.

PROOF: Suppose that an a-persistent homeomorphism f is topo­

logically conjugate to a homeomorphism g, and let /i be a topolog­

ical conjugacy between f and 以. Let e > 0 be given, and choose 

0 < s' < 6： such that if d(a,b) < ef then d(/i~1(a), < e for a,

b e X. Since f is a-persistent, given e1 > 0, there exists 5' > 0 such 

that if <%)(/,/o) < then for any x E X there is y E X satisfying 

fo(x)) < 시 for all n E Z. Given 6f > 0, choose 0 < 6 < 61 

such that if d(aj>) < 6 then d(h(a), h(b)) < 6f. Let go € H(X) be 

such that do(g,go) < 5, and put /o = hgoh^1. Then we obtain

거(그00))川0(흐))) = <f(A(：z：)),/o(h(⑦))) < 6f

for any x E and so <★)(/,/o) < 지- Since f is a-persistent, given 

7i(:r), there exists h(y) € X such that

에/"(AG/)), 招(A(z))) = d(h(9"(y)),h(g：(x))) < e'

for all n G Z. Thus we have d(gn(y),g$(x)) < e for all n E Z. This 

shows that the map g is a-persistent.
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Let f G H(X). A point x E X is said to be periodic if there exists 

n > 1 satisfying Jn(x) = x. The set of all periodic points of f will be 

denoted by Per(/). A point x E X is called nonwandering if for any 

neighborhood U of there exists n > 1 such that fn(JU)nU 尹0. We 

denote by Q(J) the set of all nonwandering points of f. Let x and y 

be any points in X, and let e > 0 be an arbitrary number. A finite 

sequence in X is called an e-chain from x to y provided that

xq = xn = y and ^i+i) < e,

for i = 0, — 1. We say that x is chain equivalent to y if for any

e > 0 there exist two e-chains: from x to 이, and from y to x. A point 

⑦ € X is called chain recurrent if it is chain equivalent to itself. We 

denote by CR(f) the set of all chain recurrent points of /. There is 

a natural equivalence relation defined on CR(f) : x y ]£ and only if 

x is chain equivalent to y. Equivalence classes under this equivalence 

relation are called chain components of /.

A basic problem is to determine when a chain recurrent point is 

approximated by periodic points of /, or more generally to determine 

if each 6-chain can be approximated by an actual orbit of f. This 

problem can be done for a-persistent homeomorphisms on topological 

manifolds. To show this we need a lemma given in [6].

LEMMA 6. Let X be a compact manifold of dim > 2 with metric 

d, and let e > 0 be arbitrary. Then there exists 6(e) > 0 such that if 

{(鉛1, J/i), • • •, (:Tn, J/n)} is a finite set of points in X x X satisfying:

i) for each i = 1,..., n, d(xi,yi) < 6; and

ii) if i / j, then Xi / Xj and yi / yj；

then there is A E H(X) with do(h,lx) < e and h(xi) = yi for i =

THEOREM 6. Let X be a compact manifold with metric d, and let 

f € H(X). If f is a-persistent, then the set of all periodic points of 

f is dense in CR(f).

PROOF: If X is one-dimensional then the proof is clear. So, we 

may assume that the dimension of X is larger than 2. Let e > 0 

be arbitrary. Then we select 5i(e) > 0 as in Lemma 5. Since f 

is a-persistent, there exists 62(61) > 0 such that if do(J\g) < @2
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and x 乞 X, then d(jfn(j/),grn(:z:)) < 61 for some y E X and all n G 

Z. given @2 > 0, we choose 63(62) > 0 as in Lemma 5. Let x G 

CR(f)》and let {▽, • • •, a：m} be a 63-chain from x to x. Then the set 

{(/(⑦0), 흐 1), • • • satisfies the hypothesis of Lemma 5.

Thus there exists h E H(X) such that

do(h,l》《) < 62 and A(/(:z：i)) = ^+1,

for i = 0,1,..., m — 1. Put g = hf. Then we have(/()(/, flO < @2 and 

gm{x} = x. Hence there is y E X satisfying d(gn(x), fn(y)) < 어 for 

all n e Z. Consider the set {(⑦, y), (乂⑦), … (:妙),/m(l/))}

in X x X satisfying the hypothesis of Lemma 5. Then we have h1 G 

H(X) such that

do(hf, lx) < 匕 and h'(gl(x)) = f(y)

for i = 0,1,..., m. In particular, we have

fm(y) = h'(gm(x)) = /i'(x) = y.

This means that B(x,e) D Per(/) 羊 仏 and so completes the proof.

In [3], Hurley showed that if / is a topologically stable diffeomor- 

phism on a smooth compact Riemannian manifold X, then each chain 

component of f contains a dense orbit. Moreover, he claimed that if 

f is topologically stable, X is connected and CR(f) has interior then 

CR(f) = X.

THEOREM 7. Let X be a compact manifold with metric d and 

f € H(X). If f is a-persistent then each chain component of f 

contains a dense orbit.

PROOF: If X is one-dimensional this is clear. Hence we may assume 

dimX > 2. Let F be a chain component in C/?(/), and let U and 

V be any nonempty open sets in F. For any x E U and y G V, 

we choose e > Q such that B(x,e) C U and C V. Since f 

is a-persistent, there exists 8(e) > 0 such that if do(f,g) < 6 then 

d(fn(^),^n(x)) < e. for some z E X and all n G Z. given 6 > 0, we 
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select 6f(6) as in Lemma 5. Since x, y € F, we can choose a 5'-chain 

{a：o, • • •，:z：m} from x to y. Then the exists h E H(X) such that

do(A,lx)<5 and h(/(：Ci)) = :끼十 i

for i =|), 1, …, m — 1. If we let g = hf, then there is z E X satisfying 

거Cfn(之),9『거(⑦)) < c for all n € Z. In particular, we have < e 
and d(fm{z\gm(xy)< e. Since ffm(x) = y, we get fm(z) 6 f m(U) Cl 

V/0. This implies that F has a dense orbit.

THEOREM 8. If CR(f) is connected, then X is the chain component 

of any point in X.

PROOF: Let e > 0 be fixed and x e X. Let F(x,e) = {y G CR(f) : 

there exists two 匕-chains, from x to y and from y to x}.

First we show that F(x^e) is open and closed in CR(f). If ?/ G 

F(2：,6), then there exist two 6-chains: {xi}^L1 from x to y, and 

{아}후 =i from j/ to x. Since f(y) E we can choose 6i > 0

such that B(/(y),5i) C』3(j/i,€). If we use the continuity of /, we 

can select 62 > 0 satisfying

Let U = B(y,e) Cl Then U is an open neighborhood

of y contained in F(:z:,£). In fact, for any z e U, the sequence 

is an 匕-chain from x to z丄 and the sequence 

{之, yi,..., yn} is an e-chain from z to z. Thus we have U C 6). 

This shows that is open in CR(f). To show that F(xye) is 

closed in CR(f丄 we choose a sequence {⑬} in F(:r,e) which con­

verges to xQ G X. Then there exists n € N such that < e/2

for all i > n. Since jrn G F(:r,s) C CR(f), we can choose an 

e/2-chain {:r$,:z：Y,...，⑦호} from xn to xn. Consider the sequence 

{:r$, ⑦후,..., ⑦후_19 x0}. Then it is an e-chain from xQ to xn. This 

means that F(:r,e) is closed in CR(f).

Next we show that X is the chain component of x. Since CR(f) 

is connected, we have CR(f) = F(x,e). Let F(x) be the chain com­

ponent of x. Since F(x) = Q£>0 the proof is completed by

showing that CR(f) = X. So, we suppose that CJ?(/) / X. Then 
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there exists y E X with y g CR(f). Let cu/(y) = {z E X : fni(y) ― 

之 for some ni — —oo}, and let 之 G(心/(y). Then we have

2eu7G/)cQCf)cC7?(/).

Since CR(f) = F(x,e), we can choose two 匕-chains: {xi}j=0 from x 

to 之, and {zi}fLQ from z to x. Using the continuity of f, we can select 

m < 0 such that <#(/(之), P서’1 (以)) < e. Then the sequence

{⑦ o, m, • • •, w, …, /-均), y}

is an 6-chain from x to y. Similarly we can construct an 匕-chain from 

y to x. Thus we have y € 1고(:r,€). This contradict to the fact that 

y《 CR(J丁 and so completes the proof.

LU. Bronstein and A.YA. Kopanskii introduced the notions of weakly 

nonwandering set and chain recurrent set for a disperse dynamical sys­

tem (or a dynamical system without uniqueness) on a compact metric 

space, and said that, in general, it remains unknown whether or not 

the weakly nonwandering set is equal to the chain recurrent set (see 

Section 6 in [1]). Clearly, a dynamical system (with uniqueness) on a 

compact metric space s also a disperse dynamical system.

Similarly we introduce the concept of weakly nonwandering set of a 

dynamical system (or a homeomorphism) on a compact metric space.

A point x E X is called weakly nonwandenng (or weakly periodic) 

for f E -ff(X) if for any e > 0 there exists g E H(X) such that 

do(J\g) < 6 and x is nonwandering (or periodic) for g, respectively. 

The set of all weakly nonwandering (or weakly periodic) points for 

f will be denoted y Qw(f) (or Pw( f)), respectively. It is clear that 

Qw(/) is closed and J2(/) C Qw(/).

In the following example, we show that for a dynamical system (or 

a homeomorphism) fon a compact metric space, the set flw(/) is not 

equal to CR(f).

EXAMPLE 9: Let X be the subset of R2 given by X = S1 U £, 

where S1 = {(：r,y) € R2 ： rr2 + ?/2 = 1} and L = {(⑦川) € R2 : 

—1 < 鉛 < 1 and y = 0}. Then we define a homeomorphism j\ on 
S1 satisfying: (—1,0) and (1,0) are fixed points of /i, and for any 

(:r,y) 6 S'1 — {(—1,0),(1,0)} the first coordinates of fi(xyy) is larger 
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than x. Also we define a homeomorphism /么 on L satisfying: for any

G L the first coordinates of 九位川) is less than x. Then we 

can define a homeomorphism f on the compact metric space X such 

that /|si = fi and f\i = 九- Fbr the homeomorphism /, we have 

C2?(/) = X and Qw(/) = {(—1,0), (1,0)}.

THEOREM 10. For any f E the set Qw(f) is contained in 

CR(f).

PROOF: Let x € Qw(/), and let e > 0 be arbitrary. Then we have 

g € -H’(X) such that do(j\g) < e/4 and x € Sl(g). Choose 6 < e/4 

such that if d(x^y) < 6 then d(/(x),^(a:)) < e/4 and d(g(x),^(t/)) < 

e/4. Since x G 立(功), there exists n > 1 satisfying grn(B(x,5)) D 

B(x, 5)/0. If n = 1 then the sequence {⑦, x} is an 匕-chain for f. In 

fact, if we choose y G B(:r,5) with g(y) G B(:r,5), then we get

x) < <f(x), g(x)) + d(g(x), g(y)) + d(g⑴), x) < e.

If n > 1 then there exists y E B(x,6) with gn(y) G B(:c,(5). Then 

the sequence {⑦，이(y), • •. is an 匕-chain from x to x. This

shows that x € C7?(/).

REMARKS 11: In the proof of Theorem 6, we can see that the set 

is equal to CR(f) if X is a compact manifold and f G H(X). 

But, clearly, the set J2W(/) is not equal to Q(/) even if X is a compact 

manifold and f E H(X).

For any f G H(X) and any :r G X, we let 사『/(⑦) = {y E X : 

fni(x) —> y for some rii — oo} and ⑵/他) = {y E X : fni —> 

y for some n, -우 oo}. Then the sets a(/) = IJwx 사7(文) 하1d ⑵Cf) = 

Uzex ^/(^) are c瓦 11에 the negative and positive limit sects for f, re­

spectively. Let us consider the metric space K(X) = {X C X : 

A is closed} with the HausdorfF metric H

= max{sup(d(a, B), sup &)}.
a^A b^B

Let a, iu, Q, Qw, CR denote mappings H(X) — K(X) sending f to 

a(/), iu(f), ft(y), Qw(/), CR(f), respectively.

In [7], Ombach proved that the mappings defined as above are 

continuous at f if f has the P.O.T.P. and is expansive. It is well- 

known that a homeomorphism which is expansive and possesses the
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5
P.O.T.P. is topologically stable. By Lemma 1； a topologically stable 

homeomorphism is persistent. Finally, we show that the mapping 

defined as above are also continuous at / if / is persistent. To show 

this we need the concept of upper and lower semi-continuity.

Let Y be a topological space. A mapping F : Y —> K(X) is upper 

(or lower) 3emi-continuous at y G 】K, if for any e > 0 there exists a 

neighborhood U o£ y such that for any z €〔7 we have

F(z) C Be(F(?/)) ((or F(y) C Be(F(z))),

respectively, where B£(A) = {y G X : < 匕, for some x € A}.

LEMMA 12. A mapping F : y -스 F(X) is continuous at y e Y if 

and only if F is upper and lower semi-continuous at y.

THEOREM 13. Let X be a compact manifold., and let f G H(、X) 

be persistent. Then the mappings a, u?, fl, Qw, CR are continuous at 

/•

PROOF: Let e > 0 be arbitrary. Since f is persistent, we can choose 

5 > 0 such that if do(J,g) < 6i and x E Xy then d(fn(a;),^n(j/)) < 

e/3 for some y E X and all n G Z. Let g G H(X) be such that 

do(J\g) < 6i. Then for any x 三 X、there exists y 三 X satisfying 

d(/n(:z:),grn(?/)) < e/3 for all n € Z. This means that

☆(⑦) C B들(牧⑴)) C B듯(WO), and

c 日듯(이!zG/)) C B듯(a(gr)).

Thus we have

W") C B€(u?(gO) and a(f) C W>(gQ.

Since the mapping CR : H(X) -수 K(X) is upper semi-continuous 

at /, by Corollary 3 (a) in [2], we can choose 82 > 0 such that if 
게o(J\ 9)< @2 then CR(g) C 호((77?(/)). Let 6 = min(q으에스jmd 

let g G be such that d(Kf,g) < 6. Since CR(J) = Per(/) by 

Theorem 6, we have

C7?(/) = P<n c^(7)c Be(@) c Be(C水 (sO).
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This implies that all considered mappings are lower semi-continuous 

at f. On the other hand, we have

= U파 C CR(g) C Be(C7?(/)) =

This means that all considered mappings are upper semi-continuous 

at /. By Lemma 12, we completes the proof.
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