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Chain Recurrence in Persistent Dynamical Systems

Dong Pyo Chi, Ki-Shik Koo, Keon-Hee Lee and Jong-Suh Park

ABSTRACT. The purpose of this paper is to study the chain 
recurrent sets under persistent dynamical systems, and give 
a necessary condition for a persistent dynamical system to be 
topologically stable. Moreover, we show that the various recur
rent sets depend continuously on persistent dynamical system.

The abstract theory of dynamical systems distinguished various re

currence properties such as periodicity, Poisson stability, nonwander- 

ingness, chain recurrence, etc. The weakest property among them is 

the property of a point to be chain recurrent.

In [3], Hurley analysed the chain recurrent sets under topologically 

stable dynamical systems, and Lewowicz [5] introduced the concept 

of persistence of a dynamical system which is weaker than that of 

topological stability.

The purpose of this paper is to study the chain recurrent sets un

der persistent dynamical systems, and give a necessary condition for a 

persistent dynamical system to be topologically stable. LU. Bronstein 

and A.YA. Kopanskii [1] introduced the concepts of weakly nonwan

dering set and chain recurrent set for a disperse dynamical system (or 

a dynamical system without uniqueness) and said that, in general, it 

remains unknown whether or not the weakly nonwandering set is equal 

to the chain recurrent set. We claim that for a dynamical system (with 

uniqueness) the weakly nonwandering set is properly contained in the 

chain recurrence set. Moreover, Ombach [7] showed that the various 

recurrence mappings (such as a, a;, Q, CR, etc.) are continuous at f 

if the system f has the P.O.T.P. (pseudo orbit tracing property) and 

is expansive. Finally we prove that the various recurrence mappings 

are also continuous at f if the system f is persistent.
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We consider homeomorphisms acting on a compact metric space. 

Unless otherwise mentioned, we let X denote a compact metric space 

with a metric d. Let denote the collection of all homeomor

phisms of X to itself topologized by the C°-metric

do(f,g) = sup{J(y(:z:), 이(x)) : X e X}.

A homeomorphism f on X is said to be topologically stable if for any 

£ > 0 there exists 6(e) > 0 such that if d(KJ\g) < 6 then there exists 

a continuous map h : X — X satisfying hg = fg and do(h,lx) < 

e, where lx is the identity map on X. The map h is called the 

semiconjugacy from g to f. We say that f E H(X) is expansive if 

there exists e(/) > 0 such that if d(/n(x), /n(y)) < e for every n € Z, 

then x = y. Such numbers e(J) are called expansive constants. A 

homeomorphism / on X is called a(or 0)-persistent if for any e > 0 

there exists 5(匕) > 0 such that if <io(/,ff) < 6 and x 三 X, then there 

is y E X satisfying

d(fn(y),gn(x)) < e (or </"(=),g"(y)) < e),

respectively, for all n G Z.

LEMMA 1. Any topologically stable homeomorphisni is a(0)- 

persistent.

PROOF: Let f e be topologically stable, and let € > 0 be 

arbitrary. Then we can choose 6 > 0 such that if do(J\g) < 6 then 

there is a continuous map h : X —으 X with hg = fh and lx) < 引 

For any x E choose y E X with h(y) = x. Then we have

거CfnGr),g"(y)) = 에f"(AG/)),gnG/))

= 서(奴/거⑵))川 nG/)) < 乞

for all n € Z. This means that f is ^-persistent. For any :r G X, by 

letting A(x) = y, we have

d(fn(y),ffn(x)) = d(fn(h(x)),gn(x))

= d(h(gn(x)\gn(x)) < e,
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for all n € Z, which implies that f is a-persistent.

Throughout this paper, it will be noted that a persistent homeo

morphism means a(0)-persistent homeomorphism. The converse of 

the aobve lemma does not hold (See [5]). The following theorem 

gives a necessary condition for an a-persistent homeomorphism to be 

topologically stable.

THEOREM 2. An a-persistent homeomorphism is topologically sta

ble if it is expansive.

PROOF: Let f G H(x)be a-persistent, and let e(/) be an expan

sive constant for f. Choose e > 0 satisfying e < e(/)/4. Given e > 0, 

there exists 5 > 0 such that if do(f,g) < 6, then for any x E there 

is y E X satisfying

거(/nG/)乃nO)) < 匕/2

for all n € Z. Define a map h : X X by h(x) = y, where y is an 

element in X chosen by the property of persistence of f as the above. 

Then the map h is well-defined. In fact, let 之 be another element 

in X such that d(yn(2：),grn(:r)) < e/2 for all n E Z. Then we have 

서(/n(?/),/n(2：)) < 乞 for all n e Z. Since f is expansive, we get y = z.

Now we show that the map h is continuous. Put h(x) = y and 

A(:r') = y', and let A > 0 be given. Since f is expansive, we can 

choose N such that if <Z(/nG/),/n(y')) < e(/) for all —N < n < N 

then d(y,yf) < A. Suppose not. Then, for each 2V > 1, there exists 

a— bpq G X such that

d(fn(aN), fn(J)N)) < e(/) and d{aN, bN) > A,

for all —7V < n < TV. Consider the sequences {(=} and {b^}. Since X 

is compact, we have(〕小 — a and by — & in A". Then we get d(a, b) > 

A and d(/n(a),/n(&)) < e(/), for all n G Z. This contradicts to the 

expansiveness of f. Since g : X — X is continuous, given N, there 

exists 77 > 0 such that if c?(:r,:r') < 77 then d{gn{x)^gn{x,y)< e(/)/2 

for all —N < n < N. Consequently we have

에/"(y),/nG/')) 幻/(r(y),改Gr)) + 己(改(z),gn(O)

+ d(g"(:r'),n?/'))<e(/),
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if d(<x1x,) < T)and —N < n < N. Thus we obtain =

< A. By now, we have shown that for any A > 0 

there exists 77 > 0 such that if d^x^x1) < 77 then d{h(x\ h^x9)) < A, 

i.e. h is continuous.

Moreover, for any x E there exists y E X satisfying 己(/저’1 (?/), 
^n+1(x)) < e/2 for all n G Z. Then we get 7i(g『(:r)) = f(y) = f(h(x)), 

by the definition of h. Hence we have hg = fh on X. This completes 

the proof of theorem.

COROLLARY 3. An a-persistent homeomorphism is ^-persistent if 

it is expansive.

We say that two homeomorphisms f and g are topologically conju

gate if there exists h E H(X) satisfying hg = fh. The homeomor

phism h is called a topological conjugacy between f and g.

In the following theorem, we see that the a (or /^-persistence is 

invariant under a topological coxyugacy.

THEOREM 4. Any homeomoiphism which is topologically conju

gate to an a(or 0)-persistent homeomorphism is a (or 0)-persistent, 

respectively.

PROOF: Suppose that an a-persistent homeomorphism f is topo

logically conjugate to a homeomorphism g, and let /i be a topolog

ical conjugacy between f and 以. Let e > 0 be given, and choose 

0 < s' < 6： such that if d(a,b) < ef then d(/i~1(a), < e for a,

b e X. Since f is a-persistent, given e1 > 0, there exists 5' > 0 such 

that if <%)(/,/o) < then for any x E X there is y E X satisfying 

fo(x)) < 시 for all n E Z. Given 6f > 0, choose 0 < 6 < 61 

such that if d(aj>) < 6 then d(h(a), h(b)) < 6f. Let go € H(X) be 

such that do(g,go) < 5, and put /o = hgoh^1. Then we obtain

거(그00))川0(흐))) = <f(A(：z：)),/o(h(⑦))) < 6f

for any x E and so <★)(/,/o) < 지- Since f is a-persistent, given 

7i(:r), there exists h(y) € X such that

에/"(AG/)), 招(A(z))) = d(h(9"(y)),h(g：(x))) < e'

for all n G Z. Thus we have d(gn(y),g$(x)) < e for all n E Z. This 

shows that the map g is a-persistent.
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Let f G H(X). A point x E X is said to be periodic if there exists 

n > 1 satisfying Jn(x) = x. The set of all periodic points of f will be 

denoted by Per(/). A point x E X is called nonwandering if for any 

neighborhood U of there exists n > 1 such that fn(JU)nU 尹0. We 

denote by Q(J) the set of all nonwandering points of f. Let x and y 

be any points in X, and let e > 0 be an arbitrary number. A finite 

sequence in X is called an e-chain from x to y provided that

xq = xn = y and ^i+i) < e,

for i = 0, — 1. We say that x is chain equivalent to y if for any

e > 0 there exist two e-chains: from x to 이, and from y to x. A point 

⑦ € X is called chain recurrent if it is chain equivalent to itself. We 

denote by CR(f) the set of all chain recurrent points of /. There is 

a natural equivalence relation defined on CR(f) : x y ]£ and only if 

x is chain equivalent to y. Equivalence classes under this equivalence 

relation are called chain components of /.

A basic problem is to determine when a chain recurrent point is 

approximated by periodic points of /, or more generally to determine 

if each 6-chain can be approximated by an actual orbit of f. This 

problem can be done for a-persistent homeomorphisms on topological 

manifolds. To show this we need a lemma given in [6].

LEMMA 6. Let X be a compact manifold of dim > 2 with metric 

d, and let e > 0 be arbitrary. Then there exists 6(e) > 0 such that if 

{(鉛1, J/i), • • •, (:Tn, J/n)} is a finite set of points in X x X satisfying:

i) for each i = 1,..., n, d(xi,yi) < 6; and

ii) if i / j, then Xi / Xj and yi / yj；

then there is A E H(X) with do(h,lx) < e and h(xi) = yi for i =

THEOREM 6. Let X be a compact manifold with metric d, and let 

f € H(X). If f is a-persistent, then the set of all periodic points of 

f is dense in CR(f).

PROOF: If X is one-dimensional then the proof is clear. So, we 

may assume that the dimension of X is larger than 2. Let e > 0 

be arbitrary. Then we select 5i(e) > 0 as in Lemma 5. Since f 

is a-persistent, there exists 62(61) > 0 such that if do(J\g) < @2
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and x 乞 X, then d(jfn(j/),grn(:z:)) < 61 for some y E X and all n G 

Z. given @2 > 0, we choose 63(62) > 0 as in Lemma 5. Let x G 

CR(f)》and let {▽, • • •, a：m} be a 63-chain from x to x. Then the set 

{(/(⑦0), 흐 1), • • • satisfies the hypothesis of Lemma 5.

Thus there exists h E H(X) such that

do(h,l》《) < 62 and A(/(:z：i)) = ^+1,

for i = 0,1,..., m — 1. Put g = hf. Then we have(/()(/, flO < @2 and 

gm{x} = x. Hence there is y E X satisfying d(gn(x), fn(y)) < 어 for 

all n e Z. Consider the set {(⑦, y), (乂⑦), … (:妙),/m(l/))}

in X x X satisfying the hypothesis of Lemma 5. Then we have h1 G 

H(X) such that

do(hf, lx) < 匕 and h'(gl(x)) = f(y)

for i = 0,1,..., m. In particular, we have

fm(y) = h'(gm(x)) = /i'(x) = y.

This means that B(x,e) D Per(/) 羊 仏 and so completes the proof.

In [3], Hurley showed that if / is a topologically stable diffeomor- 

phism on a smooth compact Riemannian manifold X, then each chain 

component of f contains a dense orbit. Moreover, he claimed that if 

f is topologically stable, X is connected and CR(f) has interior then 

CR(f) = X.

THEOREM 7. Let X be a compact manifold with metric d and 

f € H(X). If f is a-persistent then each chain component of f 

contains a dense orbit.

PROOF: If X is one-dimensional this is clear. Hence we may assume 

dimX > 2. Let F be a chain component in C/?(/), and let U and 

V be any nonempty open sets in F. For any x E U and y G V, 

we choose e > Q such that B(x,e) C U and C V. Since f 

is a-persistent, there exists 8(e) > 0 such that if do(f,g) < 6 then 

d(fn(^),^n(x)) < e. for some z E X and all n G Z. given 6 > 0, we 
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select 6f(6) as in Lemma 5. Since x, y € F, we can choose a 5'-chain 

{a：o, • • •，:z：m} from x to y. Then the exists h E H(X) such that

do(A,lx)<5 and h(/(：Ci)) = :끼十 i

for i =|), 1, …, m — 1. If we let g = hf, then there is z E X satisfying 

거Cfn(之),9『거(⑦)) < c for all n € Z. In particular, we have < e 
and d(fm{z\gm(xy)< e. Since ffm(x) = y, we get fm(z) 6 f m(U) Cl 

V/0. This implies that F has a dense orbit.

THEOREM 8. If CR(f) is connected, then X is the chain component 

of any point in X.

PROOF: Let e > 0 be fixed and x e X. Let F(x,e) = {y G CR(f) : 

there exists two 匕-chains, from x to y and from y to x}.

First we show that F(x^e) is open and closed in CR(f). If ?/ G 

F(2：,6), then there exist two 6-chains: {xi}^L1 from x to y, and 

{아}후 =i from j/ to x. Since f(y) E we can choose 6i > 0

such that B(/(y),5i) C』3(j/i,€). If we use the continuity of /, we 

can select 62 > 0 satisfying

Let U = B(y,e) Cl Then U is an open neighborhood

of y contained in F(:z:,£). In fact, for any z e U, the sequence 

is an 匕-chain from x to z丄 and the sequence 

{之, yi,..., yn} is an e-chain from z to z. Thus we have U C 6). 

This shows that is open in CR(f). To show that F(xye) is 

closed in CR(f丄 we choose a sequence {⑬} in F(:r,e) which con

verges to xQ G X. Then there exists n € N such that < e/2

for all i > n. Since jrn G F(:r,s) C CR(f), we can choose an 

e/2-chain {:r$,:z：Y,...，⑦호} from xn to xn. Consider the sequence 

{:r$, ⑦후,..., ⑦후_19 x0}. Then it is an e-chain from xQ to xn. This 

means that F(:r,e) is closed in CR(f).

Next we show that X is the chain component of x. Since CR(f) 

is connected, we have CR(f) = F(x,e). Let F(x) be the chain com

ponent of x. Since F(x) = Q£>0 the proof is completed by

showing that CR(f) = X. So, we suppose that CJ?(/) / X. Then 
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there exists y E X with y g CR(f). Let cu/(y) = {z E X : fni(y) ― 

之 for some ni — —oo}, and let 之 G(心/(y). Then we have

2eu7G/)cQCf)cC7?(/).

Since CR(f) = F(x,e), we can choose two 匕-chains: {xi}j=0 from x 

to 之, and {zi}fLQ from z to x. Using the continuity of f, we can select 

m < 0 such that <#(/(之), P서’1 (以)) < e. Then the sequence

{⑦ o, m, • • •, w, …, /-均), y}

is an 6-chain from x to y. Similarly we can construct an 匕-chain from 

y to x. Thus we have y € 1고(:r,€). This contradict to the fact that 

y《 CR(J丁 and so completes the proof.

LU. Bronstein and A.YA. Kopanskii introduced the notions of weakly 

nonwandering set and chain recurrent set for a disperse dynamical sys

tem (or a dynamical system without uniqueness) on a compact metric 

space, and said that, in general, it remains unknown whether or not 

the weakly nonwandering set is equal to the chain recurrent set (see 

Section 6 in [1]). Clearly, a dynamical system (with uniqueness) on a 

compact metric space s also a disperse dynamical system.

Similarly we introduce the concept of weakly nonwandering set of a 

dynamical system (or a homeomorphism) on a compact metric space.

A point x E X is called weakly nonwandenng (or weakly periodic) 

for f E -ff(X) if for any e > 0 there exists g E H(X) such that 

do(J\g) < 6 and x is nonwandering (or periodic) for g, respectively. 

The set of all weakly nonwandering (or weakly periodic) points for 

f will be denoted y Qw(f) (or Pw( f)), respectively. It is clear that 

Qw(/) is closed and J2(/) C Qw(/).

In the following example, we show that for a dynamical system (or 

a homeomorphism) fon a compact metric space, the set flw(/) is not 

equal to CR(f).

EXAMPLE 9: Let X be the subset of R2 given by X = S1 U £, 

where S1 = {(：r,y) € R2 ： rr2 + ?/2 = 1} and L = {(⑦川) € R2 : 

—1 < 鉛 < 1 and y = 0}. Then we define a homeomorphism j\ on 
S1 satisfying: (—1,0) and (1,0) are fixed points of /i, and for any 

(:r,y) 6 S'1 — {(—1,0),(1,0)} the first coordinates of fi(xyy) is larger 
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than x. Also we define a homeomorphism /么 on L satisfying: for any

G L the first coordinates of 九位川) is less than x. Then we 

can define a homeomorphism f on the compact metric space X such 

that /|si = fi and f\i = 九- Fbr the homeomorphism /, we have 

C2?(/) = X and Qw(/) = {(—1,0), (1,0)}.

THEOREM 10. For any f E the set Qw(f) is contained in 

CR(f).

PROOF: Let x € Qw(/), and let e > 0 be arbitrary. Then we have 

g € -H’(X) such that do(j\g) < e/4 and x € Sl(g). Choose 6 < e/4 

such that if d(x^y) < 6 then d(/(x),^(a:)) < e/4 and d(g(x),^(t/)) < 

e/4. Since x G 立(功), there exists n > 1 satisfying grn(B(x,5)) D 

B(x, 5)/0. If n = 1 then the sequence {⑦, x} is an 匕-chain for f. In 

fact, if we choose y G B(:r,5) with g(y) G B(:r,5), then we get

x) < <f(x), g(x)) + d(g(x), g(y)) + d(g⑴), x) < e.

If n > 1 then there exists y E B(x,6) with gn(y) G B(:c,(5). Then 

the sequence {⑦，이(y), • •. is an 匕-chain from x to x. This

shows that x € C7?(/).

REMARKS 11: In the proof of Theorem 6, we can see that the set 

is equal to CR(f) if X is a compact manifold and f G H(X). 

But, clearly, the set J2W(/) is not equal to Q(/) even if X is a compact 

manifold and f E H(X).

For any f G H(X) and any :r G X, we let 사『/(⑦) = {y E X : 

fni(x) —> y for some rii — oo} and ⑵/他) = {y E X : fni —> 

y for some n, -우 oo}. Then the sets a(/) = IJwx 사7(文) 하1d ⑵Cf) = 

Uzex ^/(^) are c瓦 11에 the negative and positive limit sects for f, re

spectively. Let us consider the metric space K(X) = {X C X : 

A is closed} with the HausdorfF metric H

= max{sup(d(a, B), sup &)}.
a^A b^B

Let a, iu, Q, Qw, CR denote mappings H(X) — K(X) sending f to 

a(/), iu(f), ft(y), Qw(/), CR(f), respectively.

In [7], Ombach proved that the mappings defined as above are 

continuous at f if f has the P.O.T.P. and is expansive. It is well- 

known that a homeomorphism which is expansive and possesses the
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5
P.O.T.P. is topologically stable. By Lemma 1； a topologically stable 

homeomorphism is persistent. Finally, we show that the mapping 

defined as above are also continuous at / if / is persistent. To show 

this we need the concept of upper and lower semi-continuity.

Let Y be a topological space. A mapping F : Y —> K(X) is upper 

(or lower) 3emi-continuous at y G 】K, if for any e > 0 there exists a 

neighborhood U o£ y such that for any z €〔7 we have

F(z) C Be(F(?/)) ((or F(y) C Be(F(z))),

respectively, where B£(A) = {y G X : < 匕, for some x € A}.

LEMMA 12. A mapping F : y -스 F(X) is continuous at y e Y if 

and only if F is upper and lower semi-continuous at y.

THEOREM 13. Let X be a compact manifold., and let f G H(、X) 

be persistent. Then the mappings a, u?, fl, Qw, CR are continuous at 

/•

PROOF: Let e > 0 be arbitrary. Since f is persistent, we can choose 

5 > 0 such that if do(J,g) < 6i and x E Xy then d(fn(a;),^n(j/)) < 

e/3 for some y E X and all n G Z. Let g G H(X) be such that 

do(J\g) < 6i. Then for any x 三 X、there exists y 三 X satisfying 

d(/n(:z:),grn(?/)) < e/3 for all n € Z. This means that

☆(⑦) C B들(牧⑴)) C B듯(WO), and

c 日듯(이!zG/)) C B듯(a(gr)).

Thus we have

W") C B€(u?(gO) and a(f) C W>(gQ.

Since the mapping CR : H(X) -수 K(X) is upper semi-continuous 

at /, by Corollary 3 (a) in [2], we can choose 82 > 0 such that if 
게o(J\ 9)< @2 then CR(g) C 호((77?(/)). Let 6 = min(q으에스jmd 

let g G be such that d(Kf,g) < 6. Since CR(J) = Per(/) by 

Theorem 6, we have

C7?(/) = P<n c^(7)c Be(@) c Be(C水 (sO).
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This implies that all considered mappings are lower semi-continuous 

at f. On the other hand, we have

= U파 C CR(g) C Be(C7?(/)) =

This means that all considered mappings are upper semi-continuous 

at /. By Lemma 12, we completes the proof.

References

[1] LU. Bronstein and A.YA. Kopanskii, Chain recurrence in dynamical systems 
without uniqueness^ Nonlinear Anal. TMA 12 (1988), 147-154.

[2] M. Hurley, Bifurcation and chain recurrence^ Ergod. Th. & Dynam. Sys. 3 
(1983), 231-240.

[3] , Consequences of topological stability, J. Diff. Eqn. 54 (1984), 
60-72.

[4] K.H. Lee, Recurrence in Lipschitz stable flows, Bull. Austral. Math. Soc. 38 
(1988), 197-202.

[5] J. Lewowicz, Persistence in expansive systems, Ergod. Th. & Dynam. Sys. 
3 (1983), 567-578.

[6] Z. Nitecki & M. Shub, Filtrations, decompositions and explosions^ Amer. J. 
Math. 97 (1976), 1029-1047.

[7] J. Ombach, Consequences of the P. O. T.P, and expansiveness, J. Austral. 
Math. Soc. (Series A) 43 (1987), 301-313.

Department of Mathematics 
Seoul National University 
Seoul 151-742, Korea 
and
Department of Mathematics
Daejeon University
Taejon 300-120, Korea 
and
Department of Mathematics
Chungnam National University 
Taejon, 305-764, Korea 
and
Department of Mathematics 
Chungnam National University 
Taejon, 305-764, Korea


