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Chain Recurrence in Persistent Dynamical Systems

DonG Pyo CHi, Ki-SHIK Koo, KEON-HEE LEE AND JONG-SUH PARK

ABSTRACT. The purpose of this paper is to study the chain
recurrent sets under persistent dynamical systems, and give
a necessary condition for a persistent dynamical system to be
topologically stable. Moreover, we show that the various recur-
rent sets depend continuously on persistent dynamical system.

The abstract theory of dynamical systems distinguished various re-
currence properties such as periodicity, Poisson stability, nonwander-
ingness, chain recurrence, etc. The weakest property among them is
the property of a point to be chain recurrent. N

In [3], Hurley analysed the chain recurrent sets under topologically
stable dynamical systems, and Lewowicz [5] introduced the concept
of persistence of a dynamical system which is weaker than that of
topological stability.

The purpose of this paper is to study the chain recurrent sets un-
der persistent dynamical systems, and give a necessary condition for a
persistent dynamical system to be topologically stable. I.U. Bronstein
and A.YA. Kopanskii [1] introduced the concepts of weakly nonwan-
dering set and chain recurrent set for a disperse dynamical system (or
a dynamical system without uniqueness) and said that, in general, it
remains unknown whether or not the weakly nonwandering set is equal
to the chain recurrent set. We claim that for a dynamical system (with
uniqueness) the weakly nonwandering set is properly contained in the
chain recurrence set. Moreover, Ombach [7] showed that the various
recurrence mappings (such as a, w, 2, CR, etc.) are continuous at f
if the system f has the P.O.T.P. (pseudo orbit tracing property) and
is expansive. Finally we prove that the various recurrence mappings
are also continuous at f if the system f is persistent.
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We consider homeomorphisms acting on a compact metric space.
Unless otherwise mentioned, we let X denote a compact metric space
with a metric d. Let H(X) denote the collection of all homeomor-
phisms of X to itself topologized by the C°-metric

do(f, 9) = sup{d(f(z),9(z)) : z € X}.

A homeomorphism f on X is said to be topologically stable if for any
€ > 0 there exists §(¢) > 0 such that if do(f,g) < 6 then there exists
a continuous map h : X — X satisfying hg = fg and do(h,1x) <
€, where 1x is the identity map on X. The map h is called the
semiconjugacy from g to f. We say that f € H(X) is ezpansive if
there exists e(f) > 0 such that if d(f"(z), f*(y)) < e for every n € Z,
then £ = y. Such numbers e(f) are called ezpansive constants. A
homeomorphism f on X is called a(or B)-persistent if for any € > 0
there exists 6(¢) > 0 such that if do(f,9) < é and = € X, then there
is y € X satisfying

d(f"(y),g"(z)) <e (ord(f"(z),9"(y)) <e¢),

respectively, for all n € Z.

LEMMA 1. Any topologically stable homeomorphism is a(B)-
persistent.

PROOF: Let f € H(X) be topologically stable, and let ¢ > 0 be
arbitrary. Then we can choose § > 0 such that if do(f,g9) < 6 then
there is a continuous map h : X — X with hg = fhand dy(h,1x) < €.
For any z € X, choose y € X with h(y) = z. Then we have

d(f"(z),9"(y)) = d(f"(h(¥)), 9" (v))
= d(h(9"(y)), 9" (¥)) <&,

for all n € Z. This means that f is -persistent. For any =z € X, by
letting h(z) = y, we have

d(f"(y), 9" (2)) = d(f*(h(2)), 9" (2))
= d(h(g"(2)),9"(2)) <,
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for all n € Z, which implies that f is a-persistent.

Throughout this paper, it will be noted that a persistent homeo-
morphism means a(3)-persistent homeomorphism. The converse of
the aobve lemma does not hold (See [5]). The following theorem
gives a necessary condition for an a-persistent homeomorphism to be
topologically stable.

THEOREM 2. An a-persistent homeomorphism is topologically sta-
ble if it is expansive.

PROOF: Let f € H(X) be a-persistent, and let e(f) be an expan-
sive constant for f. Choose € > 0 satisfying € < e(f)/4. Given € > 0,
there exists § > 0 such that if do(f,g) < 6, then for any = € X, there
is y € X satisfying

d(f"(y),9"(x)) < /2

for all n € Z. Define a map h: X — X by h(z) = y, where y is an
element in X chosen by the property of persistence of f as the above.
Then the map h is well-defined. In fact, let z be another element
in X such that d(f"(z),¢"(z)) < €/2 for all n € Z. Then we have
d(f™"(y), f*(2)) < efor all n € Z. Since f is expansive, we get y = z.

Now we show that the map h is continuous. Put h(z) = y and
h(z') = ¢', and let A > 0 be given. Since f is expansive, we can
choose N such that if d(f"(y), f*(v')) < e(f) for all —-N <n < N
then d(y,y') < A. Suppose not. Then, for each N > 1, there exists
an, by € X such that

d(f"(an), f*(bn)) < e(f) and d(an,bn) 2> A,

forall -N < n < N. Consider the sequences {ay} and {bn}. Since X
is compact, we have ay — a and by — bin X. Then we get d(a,b) >
A and d(f"(a), f*(b)) < e(f), for all n € Z. This contradicts to the
expansiveness of f. Since ¢ : X — X is continuous, given N, there
exists n > 0 such that if d(z,z') < n then d(¢"(z),9"(z")) < e(f)/2
for all —N < n < N. Consequently we have '

d(f™(y), f*(¥") <d(f™(y), 9"(z)) + d(g"(2), 9" (z"))
+d(g" ("), f"(y")) < e(f),
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if d(z,z') < 7 and =N < n < N. Thus we obtain d(y,y’') =
d(h(z),h(z')) < A. By now, we have shown that for any A > 0
there exists n > 0 such that if d(z,z') < n then d(h(z),h(z")) < A,
i.e. h is continuous.

Moreover, for any = € X, there exists y € X satisfying d(f"**(y),
g"t1(z)) < ¢/2 for all n € Z. Then we get h(g(z)) = f(y) = f(h(z)),
by the definition of h. Hence we have hg = fh on X. This completes
the proof of theorem.

COROLLARY 3. An a-persistent homeomorphism is (3-persistent if
it is expansive.

We say that two homeomorphisms f and g are topologically conju-
gate if there exists h € H(X) satisfying hg = fh. The homeomor-
phism h is called a topological conjugacy between f and g.

In the following theorem, we see that the a (or f)-persistence is
invariant under a topological conjugacy.

THEOREM 4. Any homeomorphism which is topologically conju-
gate to an a(or f3)-persistent homeomorphism is a(or ()-persistent,
respectively.

PROOF: Suppose that an a-persistent homeomorphism f is topo-
logically conjugate to a homeomorphism g, and let h be a topolog-
ical conjugacy between f and g. Let ¢ > 0 be given, and choose
0 < €' < € such that if d(a,b) < €' then d(h™*(a),h™*(b)) < € for a,
b € X. Since f is a-persistent, given €' > 0, there exists §' > 0 such
that if do(f, fo) < &' then for any ¢ € X there is y € X satisfying
d(f™*(y), f&(z)) < € for all n € Z. Given §' > 0, choose 0 < § < ¢
such that if d(a,b) < é then d(h(a),h(b)) < é'. Let go € H(X) be
such that do(g,90) < 6, and put fo = hgoh™1. Then we obtain

d(h(g(2)), h(go())) = d(f(h(z)), fo(h(2))) < &

for any z € X, and so do(f, fo) < §'. Since f is a-persistent, given
h(z), there exists h(y) € X such that

d(f"(h(y)), g (h(z))) = d(h(g"(¥)), k(g5 (2))) < ¢’
for all n € Z. Thus we have d(¢9™(y),9g(z)) < € for all n € Z. This

shows that the map ¢ is a-persistent.



CHAIN RECURRENCE IN PERSISTENT DYNAMICAL SYSTEMS 5

Let f € H(X). A point z € X is said to be periodic if there exists
n > 1 satisfying f"(z) = z. The set of all periodic points of f will be
denoted by Per(f). A point z € X is called nonwandering if for any
neighborhood U of z, there exists n > 1 such that f*(U)NU # 0. We
denote by Q(f) the set of all nonwandering points of f. Let z and y
be any points in X, and let € > 0 be an arbitrary number. A finite
sequence {z;}ir, in X is called an ¢-chain from z to y provided that

zo =2, zp=y and d(f(z:),zi+1) <¢,

for: =0,1,...,n—1. We say that z is chain equivalent to y if for any
€ > 0 there exist two e-chains: from z to y, and from y to z. A point
z € X is called chain recurrent if it is chain equivalent to itself. We
denote by CR(f) the set of all chain recurrent points of f. There is
a natural equivalence relation defined on CR(f) : z ~ y if and only if
z is chain equivalent to y. Equivalence classes under this equivalence
relation are called chain components of f.

A basic problem is to determine when a chain recurrent point is
approximated by periodic points of f, or more generally to determine
if each e-chain can be approximated by an actual orbit of f. This
problem can be done for a-persistent homeomorphisms on topological
manifolds. To show this we need a lemma given in [6].

LEMMA 6. Let X be a compact manifold of dim > 2 with metric
d, and let € > 0 be arbitrary. Then there exists 6(¢) > 0 such that if
{(z1,91),...,(zn,Yn)} is a finite set of points in X x X satisfying:

i) for eachi =1,...,n, d(zi,yi) < §; and

ii) if i # j, then z; # z; and y; # y;;
then there is h € H(X) with do(h,1x) < € and h(z;) = y; for 1 =
1,...,n.

THEOREM 6. Let X be a compact manifold with metric d, and let
f € H(X). If f is a-persistent, then the set of all periodic points of
f is dense in CR(f).

ProOOF: If X is one-dimensional then the proof is clear. So, we
may assume that the dimension of X is larger than 2. Let ¢ > 0
be arbitrary. Then we select 6;(¢) > 0 as in Lemma 5. Since f
is a-persistent, there exists 62(6;) > 0 such that if do(f,9) < 62
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and z € X, then d(f"(y),¢"(z)) < 61 for some y € X and all n €
Z. given 63 > 0, we choose 63(62) > 0 as in Lemma 5. Let = €
CR(f), and let {zo,...,Z,n} be a 63-chain from = to . Then the set
{(f(z0),1),...,(f(Zm=1),Tm)} satisfies the hypothesis of Lemma, 5.
Thus there exists h € H(X) such that

do(h, ]-x) < 62 and h(f(:t,)) = Ti41,

fori =0,1,...,m — 1. Put g = hf. Then we have do(f,g) < 2 and
g™ (z) = z. Hence there is y € X satisfying d(¢"(z), f*(y)) < 61 for

all n € Z. Consider the set {(z,y),(9(2), f(¥)),---, (g™ (), f™(v))}
in X x X satisfying the hypothesis of Lemma 5. Then we have h' €

H(X) such that
do(h',1x) <& and K'(g'(z)) = f'(y)
for: =0,1,...,m. In particular, we have

f™(y) = k(g™ () = k'(z) = .
This means that B(z,e) N Per(f) # 0, and so completes the proof.

In [3], Hurley showed that if f is a topologically stable diffeomor-
phism on a smooth compact Riemannian manifold X, then each chain
component of f contains a dense orbit. Moreover, he claimed that if
f is topologically stable, X is connected and CR( f) has interior then
CR(f)=X.

THEOREM 7. Let X be a compact manifold with metric d and
f € H(X). If f is a-persistent then each chain component of f
contains a dense orbit.

PROOF: If X is one-dimensional this is clear. Hence we may assume
dim X > 2. Let F be a chain component in CR(f), and let U and
V be any nonempty open sets in F. For any ¢ € U and y € V,
we choose € > 0 such that B(z,e) C U and B(y,e) C V. Since f
is a-persistent, there exists §(¢) > 0 such that if do(f,g) < 6 then
d(f™(2),9™(z)) < € for some z € X and all n € Z. given § > 0, we
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select 6'(6) as in Lemma 5. Since z, y € F, we .can choose a §'-chain
{z0,...,Zm} from z to y. Then the exists h € H(X) such that

do(h,1x) < é and h(f(zi))=zit1

for ¢ =f‘f), 1,...,m—1. If welet g = hf, then there is z € X satisfying
d(f™(2),9"(z)) < € for all n € Z. In particular, we have d(z,2) < ¢
and d(f™(z),¢9™(z)) < €. Since g™(z) =y, we get f™(z) € f™(U)N
V # 0. This implies that F has a dense orbit.

THEOREM 8. IfCR(f) is connected, then X is the chain component
of any point in X.

PROOF: Let ¢ > 0 be fixed and z € X. Let F(z,¢) = {y € CR(f):
there exists two ¢-chains, from z to y and from y to z}.

First we show that F(z,¢) is open and closed in CR(f). If y €
F(z,€), then there exist two e-chains: {z;}%, from z to y, and
{yj}j=1 from y to z. Since f(y) € B(y1,€), we can choose 6, > 0
such that B(f(y),61) C B(y1,€). If we use the continuity of f, we
can select 62 > 0 satisfying

f(B(y,é2)) C B(f(y),é1) C B(yx,e).

Let U = B(y,e) N B(f(zm-1,€). Then U is an open neighborhood
of y contained in F(z,e). In fact, for any z € U, the sequence
{zo,z1,...,Zm-1,2} is an e-chain from z to z, and the sequence
{#z,91,--.,Yn} is an e-chain from z to 2. Thus we have U C F(z,¢).
This shows that F(z,¢) is open in CR(f). To show that F(z,¢) is
closed in CR(f), we choose a sequence {z;} in F(z,¢) which con-
verges to 2° € X. Then there exists n € N such that d(z*,2°) < €/2
for all # > n. Since z" € F(z,e) C CR(f), we can choose an
€/2-chain {z{,z},...,2}} from z™ to z". Consider the sequence
{zg,z%,...,z7_;,2°}. Then it is an e-chain from z° to z". This
means that F(z,¢) is closed in CR(f).

Next we show that X is the chain component of z. Since CR(f)
is connected, we have CR(f) = F(z,¢). Let F(z) be the chain com-
ponent of z. Since F(z) = (), F(z,¢€), the proof is completed by
showing that CR(f) = X. So, we suppose that CR(f) # X. Then
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there exists y € X with y ¢ CR(f). Let ws(y) = {z € X : f™i(y) —
z for some n; — —oo}, and let z € ws(y). Then we have

z €ws(y) C Q(f) C CR(f).

Since CR(f) = F(z,¢), we can choose two e-chains: {z;}%_, from z
to z, and {z;}1, from z to z. Using the continuity of f, we can select
m < 0 such that d(f(2), f™*(y)) < e. Then the sequence

{II?(),iEl, AR )$k7fm+1(y)>' .. 7f—l(y)7y}

is an e-chain from z to y. Similarly we can construct an e-chain from
y to z. Thus we have y € F(z,e). This contradict to the fact that
y ¢ CR(f), and so completes the proof.

I.U. Bronstein and A.YA. Kopanskii introduced the notions of weakly
nonwandering set and chain recurrent set for a disperse dynamical sys-
tem (or a dynamical system without uniqueness) on a compact metric
space, and said that, in general, it remains unknown whether or not
the weakly nonwandering set is equal to the chain recurrent set (see
Section 6 in [1]). Clearly, a dynamical system (with uniqueness) on a
compact metric space s also a disperse dynamical system.

Similarly we introduce the concept of weakly nonwandering set of a
dynamical system (or a homeomorphism) on a compact metric space.

A point ¢ € X is called weakly nonwandering (or weakly periodic)
for f € H(X) if for any ¢ > 0 there exists ¢ € H(X) such that
do(f,9) < € and z is nonwandering (or periodic) for g, respectively.
The set of all weakly nonwandering (or weakly periodic) points for
f will be denoted y Q4,(f) (or Py(f)), respectively. It is clear that
Quw(f) is closed and Q(f) C Qu(f).

In the following example, we show that for a dynamical system (or
a homeomorphism) fon a compact metric space, the set Q,(f) is not

equal to CR(f).

EXAMPLE 9: Let X be the subset of R? given by X = S* U L,
where S! = {(z,y) € R? : 22+ y?> = 1} and L = {(z,y) € R? :
-1 <z < 1landy = 0}. Then we define a homeomorphism f; on
S satisfying: (—1,0) and (1,0) are fixed points of f;, and for any
(z,y) € S* — {(-1,0),(1,0)} the first coordinates of fi(z,y) is larger
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than z. Also we define a homeomorphism f2 on L satisfying: for any
(z,y) € L the first coordinates of fa(z,y) is less than z. Then we
can define a homeomorphism f on the compact metric space X such
that fls1 = f; and f|p = f;. For the homeomorphism f, we have
CR(f) = X and Q,(f) = {(-1,0),(1,0)}.

THEOREM 10. For any f € H(X), the set Q,(f) is contained in
CR(f).

PROOF: Let = € Qy(f), and let € > 0 be arbitrary. Then we have
g € H(X) such that do(f,9) < €/4 and z € Q(g). Choose § < ¢/4
such that if d(z,y) < § then d(f(z),g(z)) < €/4 and d(g(z),9(y)) <
e/4. Since z € (g), there exists n > 1 satisfying ¢™(B(z,6)) N
B(z,6) # 0. If n =1 then the sequence {z,z} is an e-chain for f. In
fact, if we choose y € B(z, §) with g(y) € B(z, §), then we get

d(f(z),z) < d(f(z),9(z)) + d(9(z), 9(v)) + d(g(y), z) < e.

I n > 1 then there exists y € B(z,6) with ¢"(y) € B(z,6). Then
the sequence {z,¢(y),...,9" (y),z} is an e-chain from z to z. This
shows that z € CR(f).

REMARKS 11: In the proof of Theorem 6, we can see that the set
Quw(f) is equal to CR(f) if X is a compact manifold and f € H(X).
But, clearly, the set ©,,(f) is not equal to Q(f) even if X is a compact
manifold and f € H(X).

For any f € H(X) and any =z € X, we let ag(z) = {y € X :
f*(z) — yforsomen; — oo} and wy(z) = {y € X : f* —
y for some n; — oo}. Then the sets a(f) = |,cx @f(z) and w(f) =
U:ex ws(z) are called the negative and positive limit sects for f, re-
spectively. Let us consider the metric space K(X) = {X C X :
A is closed} with the Hausdorff metric H

H(A,B) = max{sup(d(a B), supd(A b)}.

Let o, w, ©, Qy, CR denote mappings H(X) — K(X) sending f to
(), (), UF), Qulf), CR(f), respectively.

In [7], Ombach proved that the mappings defined as above are
continuous at f if f has the P.O.T.P. and is expansive. It is well-
known -that a homeomorphism which is expansive and possesses the
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P.O.T.P. is \topologically stable. By Lemma 1, a topologically stable
homeomorphism is persistent. Finally, we show that the mapping
defined as above are also continuous at f if f is persistent. To show
this' we need the concept of upper and lower semi-continuity.

Let Y be a topological space. A mapping F : Y — K(X) is upper
(or lower) semi-continuous at y € Y, if for any € > 0 there exists a
neighborhood U of y such that for any z € U we have

F(z) C B(F(y))  ((or F(y) C Be(F(2))),

respectively, where B.(A4) = {y € X : d(z,y) < ¢, for some z € A}.

LEMMA 12. A mapping F : Y — F(X) is continuous at y € Y if
and only if F' is upper and lower semi-continuous at y.

THEOREM 13. Let X be a compact manifold, and let f € H(X)
be persistent. Then the mappings a, w, 2, ,,, CR are continuous at

f.

PROOF: Let € > 0 be arbitrary. Since f is persistent, we can choose
8 > 0 such that if do(f,g9) < 61 and = € X, then d(f"(z),9"(y)) <
€/3 for some y € X and all n € Z. Let ¢ € H(X) be such that
do(f,g9) < 61. Then for any = € X, there exists y € X satisfying
d(f™(z),9™(y)) < €/3 for all n € Z. This means that

wi(2) C Bg(wy(y)) C By(w(g)),  and
ag(z) C Bg(ay(y)) C By(a(g)).

Thus we have

w(f) C Be(w(g)) and o(f) C Be(a(g).

Since the mapping CR : H(X) — K(X) is upper semi-continuous
at f, by Corollary 3 (a) in [2], we can choose §2 > 0 such that if
do(f,9) < 63 then CR(g) C B.(CR(f)). Let § = min(é;,42), and
let ¢ € H(X) be such that do(f,g) < 6. Since CR(f) = Per(f) by

Theorem 6, we have

CR(f) = Per(f) C w(f) C Be(w(g)) C B:(CR(g)).
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This implies that all considered mappings are lower semi-continuous
at f. On the other hand, we have

a(g) Uw(g) C CR(g) C B(CR(f)) = B(Per(f)).

This means that all considered mappings are upper semi-continuous
at f. By Lemma 12, we completes the proof.
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