On The External Merge Sorting With Large
Main Memory

Hwang—Kyu Choi

CHE2 FI|HFX|E o|S¢et 2F BIHEE Wioll > AT

O_F

B =2 8% YRS e AFE oM BeFes £ E F e oF EHE el o)
3t Zledn), AAE AE PYE F719 FA19 &3] FEE A 279 AlF2R Avhs 21
A, 719 ZAE A= o) 83t F A 285 e 2 Y ALE g} o 9N ¢
BAEY ool 7P € 9L vIAE dEY AR 24 Fd5 1SS B

1. Introduction

For sorting a disk file that is too large to fit
in main memory, the external merge sort?
method

consists of essentially two distinct phases,

has been generally used, This

First, segments of the input file are sorted
using a good internal sort method, such as
Quicksort?, and then these sorted segments,
called runs, are written out into disk, Second,
the runs are divided into groups, and then the
runs within the same group are merged
together to form a larger run., This process is
repeated until only one run is left. The
external merge sort is I/0 bound because it
may require more than one merge pass in the

merge phase, in which the whole file should
be read from and written out into the disk,
while the total CPU operations are nearly
equivalent to the case of its internal sort
whose comparison complexity is O(nlog,n)for
n elements to be sorted. Therefore, the 1/0
complexity in the merge phase is more
important factor that limits the performance
of the external merge sort for large files,
Most of the algorithms and analyses on
external sorts are based on the assumption
that the file is order magnitude much larger
than main memory available, resulting in the
I/0 bottleneck. Thus these mainly focus on
In(2), the
sequence minimizing the

minimizing the I/0 accesses.
optimal merge

—73—

number of the merge passes was extensively
discussed, and it can be achieved by choosing
the merge order as large as possible. On the
other hand, Kwan and Baer'® point out that
selecting the merge order as large as possible
Is not optimal under the assumption of a more
sophisticated model of the disk. But they also
notice that if we assume the generalized disk
model where each disk access taskes contant
time, then choosing the largest merge order
would be optimal, In this situation, for
merging the runs with the merge order &, 1.e.,
k-way merge, k blocks of the main memory
are needed, one for each run. Therefore, as
the main memory size becomes larger, the
merge order increases and then the I/
accesses may be reduced.

In this paper,we consider the external
merge sort problem under the assumption of a
large main memory available, yet not larger
than the file size, for relaxing the I1/0
bottleneck, We make the
assumption that computer systems have the
a file

basically

main memory sufficient to sort
compeletly with only one merge pass in
addition to the run generation phases, For
this purpose the available main memory must
be more than the square root of the file size
(measured in blocks), Recent medium to
high-end computer systems typically have
memory capacities in the range of 16 to 128
megabytes, and it is projected that chip
densisties will continue their current trend of
doubling every vyear for the foreseeable
future'V, In a later section, we will show the
minimum sizes main memory to satisfy our
assumption for large files, and also show that
these sizes are reasonabley small, which can
be supported by the above computers
described. Our
assumption, is to utilize the main memory

objective, under this

effectively for reducing 1 /0 accesses as much
as possible by saving some fraction of the
internally, instead of the disk.

2. Memory Requirement

When sorting N blocks of a file with M
blocks of the main available, where 2 <M<,
the merge order of M, i.e.,, M-way merge, is
possible, and then the number of the merge
passes needed is llogyR1, where R is the
if M
blocks of the main memory are allocated for

number of the initial runs, i.e, (%

internal sorting. Therefore, in order to merge
completely with only one pass it needs more
than W blocks of the main memory, Table 1
illustates the required memory sizes to satisfy
this condition with varying the sizes of the
file, when the block size is assumed to one
kilobytes and 4 kilobytes, In the table, it is
ture, for example, that one megabytes of the
main memory can sort 256 megabytes of file
when 4 kilobytes of the block size is assumed,
and also proportionally two mergabytes main
memory can sort one gigabytes file,
Therefore, our assumption is resonable for
very large files that are several order of

Table 1. The mainmemory sizes versus the
sizes of the file to sort with one
merge pass.

The main memory The file size(N)

size(M) lkilobytes / | 4kilobytes /
block block
64KB 4MB 1MB
128KB 16MB 4MB
256KB 64MB 16MB
512KB 256MB 64MB
1MB 1GB 256MB
2MB 4GB 1GB

*» KB(Kilobytes) MB(Megabytes) GB(Gigabytes)

—T4—

magnitude larger than the main memory,
Under our assumptiom W <M<N, the
external merge sort is completed with only
one merge pass in addition to the run
generation phase. If there are more than \/ﬁ
blocks of the main memory, then the excess
memory not used in the merge phase exists,
because the number of the initial runs,
R(l_—ﬁ—;-‘) isR <»\/17< M and thus R blocks of the
main memory are only needed to merge the
runs, This excess memory can be used to
save some fraction of the file, at least M—R
blocks, during the run generation phase. As a
result, the number of blocks to be stored in
the disk may be reduced and thus the number
Therefore, the

number of the main memory blocks required

is reduced accordingly,

to merge the runs is also reduced. The
number of the runs(or equivalently the main
memory blocks to merge the runs) to be
in the disk
following proposition,

stored is expressed by the

Proposition., For sorting N blocks of the file
with M blocks of the main memory, where ,\/j—v— <
M <N, the minimum number of the main memory
blocks to merge the runs to be stored in the disk is

| N—-M
R==]

Proof. The R’ is simply derived from
following equation, R’= [&%M—R—) '
Therefore, the total number of blocks to be

saved into the main memoryis M — R’

3. Algorithm

The external merge sort algorithm, using
more than +/N blocks of the main memory,

can be simply stated as follows:

Step 1. N—(M—R’) blocks of the file are
constructed to runs each of which has
M blocks, Possiblely the last run may
have less than M blocks:

Step 2. The remaining blocks, M — R’ blocks,
are loaded into part of the main
memory which is not to be used for
merging, and then these blocks are
sorted internally as a run;

Step 3. The (R’+1) runs, where one run
resides in the main memory and

others are stored in the disk, are

merged together into a single sorted

run with one merge pass,
4. Performance and Discussions

In the performance evaluation of our
sorting algorithm, we will only consider the
1/0 performance because the computing
complexity is nearly the same as that of its
internal sorting. Our algorithm requires at
least the two I/0 accesses of the whole file,
the initial reading and the final writing, as
any other algorthms. Thus we exclude these
two I/O accesses in the performance
consideration,

In our algorithm, the performance benefits
mainly occur in writing the runs during the
run generation phase and reading the runs
during the merge phase. This benefit is the
ratio of the number of blocks saved in the
main memory to the number of the total
blocks in the file,

following benefit factor

represented by the

Then the total number of the 1/0 accesses
reduced is turn out to be 2(1—Q)N.

Table 2 illustrates the performance benefits
of our algorithm for sorting 10 megabytes of
file, varying the main memory size. We
assumed the block size to 4 kilobytes, Thus
the file has 2500 blocks, ie., N=2500, and
then the main memory size, M is varied from
J/N to N blocks. In the table, the number
of the runs stored in the disk is decreased
as the main memory size increases, and,
accordingly, the benefit factor is increased.
As a result, the number of the 1 /0 access is
linearly decreased as the main memory size
incrases,

In conclusion, our algorithm can be used to
sort very large files more efficiently, using

Table 2. The performance of the sort algorithm for
10 megabytes of file(N=2500), varying
the main memory size(M).

The number | The number | The perform- | The number

of the main the runs | ance benefit | of the 10

memory blocks | in the disk factor accesses

(M) (R Q) 2(1-Q)N
50(0.2) 50 0.000 5000
100(0.4) 25 0.030 4850
300(1.2) 8 0.117 4416
500(2.0) 5 0.198 4010
800(3.2) 3 0.319 3406
1000(4.0) 2 0.399 3004
1200(4.8) 2 0.479 2604
1400(5.6) 1 0.560 2202
1600(6.4) 1 0.640 1803
1800(7.2) 1 0.720 1402
2000(8.0) 1 0.800 1003
2100(8.4) 1 0.840 802
2200(8.8) 1 0.880 602
2300(9.2) 1 0.920 403
2400(9.6) 1 0.960 202
2500(10.0) 0 1.000 0

* The numbers in the parentheses denote the main
memory sizes in megabytes.

reasonablely small size of the main memory
which can be
conventional computers, as long as «/JV <M<
N is satisfied. In addition, the main memory

supported by recent

requirement to merge with one pass can be
reduced to half by using the replacement

@ which can make runs

selection technique
twice as large as the main memory capacity,
instead of the conventional sorting methods
that generate runs only as large as the main

memory size,

4. References

1. M. Fishetti, Technology '86 : solid state,
IEEE Spectrum 23 (3) (1986).

2. D. E. Knuth, The Art of Computer
Programming, Vol. 3 Sorting and
Searching (Addision-Wesley, Reading,
MA, 1973).

3. S, C. Kwan and J. L, Baer, The 10
performance of multiway merge-sort and
tag sort, IEEE Trans, 34(3)
(1985) 383—2387.

4. R. Sedgewick, Implementing quicksort
programs, Comm. ACM 21(1978) 847 —857.

Comput,

