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The Use of Ridge Regression for Yield Prediction
Models with Multicollinearity Problems!
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ABSTRACT

Two types of ridge regression estimators were compared with the ordinary least squares {OLS) estimator in
order to select the “best” estimator when multicollinearity existed. The ridge estimators were Mallows's 11973)
C,-like statistic, and Allen'’s (1974) PRESS-like statistic, The evaluation was conducted based on the predictive
ability of a vield model developed by Matney et a/. (19881 . A total of 522 plots from the data of the Southwide
Leblolly Pine Seed Source study was used in this study

All of ridge estimators were better in predictive ability than the OLS estimator, The ridge estimator obtained
by using Mallows's statistic performed the best. Thus, ridge estimators can be recommended as an aiternative

estimator when multicollinearity exists among independent variables,
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key role in supporting management plans and deter-

INTRODUCTION mining the amount of cutting in the forest . Therefore,
accurate yvield prediction is essential to effective for-

Foresters are often required to make estimates of est management planning,
wood volume vield. Yield estimation accomplishes a Multiple linear regression techniques have been
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employed in the development of vield prediction
models since Mackinney and Chaiken:1939) first
applied them to loblolly pine stands. Model parame-
ters usually have been estimated using the ordinary
least squares:OLS: method, that produces estimates
with lower variance than other linear unbiased
estimators. However, the OLS estimators can have
large variance when multicollinearity exists among
variables in the data.

Yield prediction models require stand variables
such as age, density, and site index as independent
variables. Since the yield models are developed by
multiple linear regression techniques, the presence of
multicollinearity should be considered in the estima-
tion of parameters for the prediction models. If high
correlation exists between some of the independent
variables, then the regression model is said to contain
multicollinearity between these variables.

Problems can arise depending on the degree of
multicollinearity that the regression model exhibits
iMarquardt 1970 ; Kmenta 1971). When high
multicollinearity is involved in a regreszsion model,
there are some adverse dffects on parameter estimates
such as imprecise estimates and incorrect signs of
regression coefficients,

To avoid most of the pitfalls of the QLS method in
the presence of multicollinearity, biased estimation
techniques such as ridge regression, principal compo-
nents regression, and Stein-rule estimators have been
used. Since the 1970's, much research has been con-
ducted on obtaining biased estimators with better
overall performance than OLS when multicollinearity
is present {McDonald and Galarneau 1975 ; Gunst and
Mason 1977 . Dempster st al. 1977 ; Bare and Hann
1981 .

The concerns of multicollinearity have been recent-
ly addressed in forestry, Mitchell and Hann (1979
discussed ridge regression methodology for dealing
with multicollinearity and also presented an algorithm
fo- obtaining the coefficients in ridge regression, Bare
and Hanni1981! concluded, in the development of a
basal area growth model for ponderosa pine. that the
use of ridge regression produced precise and stable

estimates of model parameters,

In this study, ridge regression were evaluated to
select the “best"estimator in predictive ability of vield

models,

PAST WORK

Least squares estimator is an unbiased estimator of
the regression parameters and has the smallest vari-
ance of all unbiased linear functions, However, the
least squares estimator can be extremely unstable
when there exists multicollinearity in the data. To
obtain appropriate estimators under conditions of
multicollinearity, therefore, considerable attention
has been focused on biased estimation of the parame-
ters of a linear regression model .

A number of alternatives to OLS may be preferable
although they produce biased estimates. The objec-
tion to bias may not be strong depending upon the
intended use of the regression models{Hocking 1976° .
The important issue would appear to be whether or
not the resulting estimators perform better than the

OLS estimation method .

Ridge Regression

Ridge regression sacrifices unbiasedness to obtain
parameter estimates that have a smaller mean squar-
ed error (MSE) |
Hoer! and Kennard {1970)is

bek = (X'X+KD X'y (n

where

The ridge estimator proposed by

bxk = the ridge estimator,

X =standardized matrix of independent variables,
X’ =transpose of X,

y=standardized dependent variable vector,
I=identity matrix, and

k =ridge parameter .

Since the 1970's, there has been much interest in
ridge regression. The concept of ridge regression has
been examined by many researchers Marquardt
1970 ; Maver and Willke 1973 ; McDonald amnd
Schwing 1973 ; McDonald and Galarneau 1975 .
Much of the discussion centered around the choice of
the constant k. It is recognized that the OLS

estimator is unlikely to be a satisfactory estimator
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when the design matrix (X'X! is badly conditioned
due to multicollinearity . Ridge regression can be used
to remedy this problem. The important step in ridge
regression is to choose a value for k such that the
ridge estimator has smaller mean squared error than
the OLS estimator. To improve the coefficents of the
models, numerous methods such as ridge trace and
variance inflation factor have been proposed for deter-
mining the value of k.

Some other criteria have been proposed to select k
when the prediction capability of the model is more
important than the precision of coefficients of the
models. Research on this topic has been sketchy so
far. Myers (1986) summarized general criteria to
select the value of k for prediction performance of
regression models. The criteria are Mallows's (1973}
C,-like statistic, and Allens’s (1974 PRESS-like
statistic.

C, was proposed by Mailows (1973)as a criterion
for selecting a regression model. C, is a measure of
total squared error. Mallows's criterion in a ridge
regression context, C,, has been used by some
researchers to select k. Erikson (1983} used ridge
regression to directly estimate lagged effects in mar-
keting and discussed the C, statistic as one of the
prediction criteria for ridge regression. Li (1986)
discussed the asymptotic optimality of C, in the set-
ting of ridge regression,

Allen (1974) proposed PRESS (predicted residual
sum of squares) as a cross validation technique for the
selection of a suitable regression model. When predic-
tion capability is an important criterion for a choice of
k, a PRESS-like statistic can be used in ridge regres-
sion. This statistic is very similar to the PRESS
statistic in OLS. The method consists of dropping one
observation at a time, estimating the model, and
predicting its left-out observation. The sum of
squares of the predicted residuals is computed for
each choice of k. Delaney and Chatterjee (1986},
using Monte Carlo simulation technique, evaluated
several methods of choosing ridge parameter k includ-
ing the PRESS-like statistic. Erickson (1983) also
reviewed the PRESS-like statistic and compared it
with other prediction criteria.

Bare and Hann 19817 introduced ridge regression

to the field of forestry, using it to select independent
variables during the development of a basal area
growth model for ponderosa pine. They concluded
that the use of ridge regression produced a meaningful
predictive model with interpretable coefficients.
However, no study so far has been done to improve
the predictive capability of yield models based on data

with multicollinearity problems.

MATERIALS AND METHODS

Data

Date for this study came from the Southwide Loblol-
Iv Pine Seed Source Study, which was established in
1952-1953 to determine the genetic variation associat-
ed with geographic variation for loblolly pine {Wells
and Wakeley 1966} . A total of 522 plots was available
from this data set. Each plot contained 121 trees on a
2m x 2m spacing . The inner 49 trees on each plot were
measured at 1, 3, 3, 10, 15, 20. and 25 vears after plant-
ing, although the last three measurements at some
locations were made at age 16, 22, and 27 instead.

Height of the 49 measurement trees on each plot
was noted when planted, and survival was recorded
the first May and June thereafter. Diameter at breast
height was recorded starting at the tenth growing
season .

Total cubic-meter volume outside bark per hectare
was computed using Burkhart ¢f «/.’s (1972} individ-
ual tree volume equation. Also, the mean height of
the tallest 50 percent of surviving trees at each age
was used as average height of the dominants and
codominants for each plot. This approach was em-
ployed by Golden ef al. (1981 on the same data set
because crown class data were not available.

Since only data after the tenth growing season are
generally available for the development of growth and
vield models, data collected before age 10 were not
used to estimate parameters of vield prediction
models, Furthermore, remeasurements from these
permanent plots formed time series data. The
autocorrelation among the error terms of the time
series data was detected (p>0.1) by Durbin-Watson
test (Neter ¢t a/.1985).To remove the effect of

autocorrelation problems on vield prediction medels,
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Table 1. Data summary of stand variables for the fit
and test data sets.

@/ Number

Variable of obs. Minimum Maximum Mean
................. Fit data set  ----o-ereeeierennn

Age years) 261 10 27 18
H, 261 6.0 23.7 14 .4

N 261 60 2927 1334
Y 261 7.8 189.9 72.7
.................. Test data set «-e-e-rererenenens

Age.vears 261 10 27 18
H, 261 4.8 23.8 14.9

Y 261 121 2865 1186
v 261 6.9 189.0 73.4

2/ Notations !

H,=Average height of the dominant and

codominants in meter.

N =Number of trees per hectare.

V' =Total volume per hectare in cubic-meter out-

side bark.
o1ly one age class from each plot was randomly
selected . This process was adopted to simulate the
temporary plot data similar to those used for develop-
ing vield models.

Yield prediction data for this study were divdied
randomly into a fit data set and a test data set.
Regression coefficients of the model were estimated
from the fit data <et. The test data set was used to
validate the ability of the yield models to accurately
predict volume vield for an independent data set. The
fr data set consisted of 261 plots randomly selected
f-om a total of 522 plots available. The remaining 261
clots were withheld to form the test data set. This
kalf-and-half data splitting method is popular when
the collection of new data is neither practical nor
possible for model validation (Snee 1977) . The fit and
test data sets were found to be similar in stand attrib-

utes; Table 1.}

Procedure

The process of data standardization was employed
before fitting the model. Standardization is merely a
transformation on variables that eliminates all units
of measurements and forces the standardized vari-
ables to have the same mean and the same amount of

variability

Model form for yield prediction

The model form developed by Matney ef al . {1988)
for yield prediction was used for this study :

In(V) =b,+b, (1/A} —b, In(Hy1 /A+bs In:NV/A+
b, IniHy 29

where

V" =total cubic-meter volume outside bark per
hectare,

A =total stand age in vears,

H,=average height of the dominants and
codominants in meter,

N =number of surviving trees per hectare, and

In(X’ =natural logarithm of x.

Multicollinearity diagnostics
Multicollinearity means that the model has redun-
dant information because of linear dependuncy among
independent variables. In this study, four diagnostics
(simple correlations among independent variables,
(VIFs,

eigenvalues of XX, aund variance decomposition

variance inflation factors system of
proportions! were used to detect the strength of the
linear dependencies and how much the variance of
each regression coefficient is inflated .

Correlation is a measure of the intensity of associa-
tion. In multiple regression, however, the simple
correlations do not always underscore the extent of
the multicollinearity problem because multicollinear-
ity often involves associations among multiple in-
dependent variables, Even though the simple ccrrela-
tions do not indicate the extent of multicollinearity,
they may provide guideline values to see which one-on
-one associations exist (Myers 1986} . The values of
simple correlations among independent variables are
presented in Tabpe 2. As a general rule if the correla-
tion coefficient between the values of two independent
variables is greater than 0.8 or 0.9, then multicol-

Teble 2. Simple correlations among independent
variables used in the yield prediction

model .
Variable 1/A In(Hy /A In(N)/A  IntHo
1'A 1.0000  0.9863 0.9646 -0.9085
In(H /A 1.0000 0.9472 -0.8385
In(N; /A 1.0000 -0.8858

IntH 1.0000
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linearity is a problem (Judge et a/. 1988) . In this
study, the absolute values of correlation coefficient
among independent variables ranged from (.8385 to
09863, signifyving a degree of multicollinearity .

The ViFs represent the inflation that each regres-
sion coefficient experiences above the ideal level if the
correaltion matrices were an identity matrix, They

provide more a productive approach for detection

than do simple correlation. They indicate which co- .

efficients are adversely affected and to what extent,
The VIF is given by

VIF=1/11-R*%) 3t
where

R? =coefficient of determination when X, is regres-

sed on the remaining inedpendent variahles.
[t is generally known that if VIF exceeds 10 there
should be at least some concern with multicollinearity
iMvers 1986). As shown in Table 3, the VIFs of
variables 1/A and Ini{H.) /A were 222 1 and 120.8,
respectively, indicating that a multicollinearity prob-
lem should be suspected.

Eigenvalues of the correlation matrix can also be
used to detect the multicollincarity problem. A near
-zero eigenvalue indicates a strong linear depen-
dency . Multicollinearity can be measured in the condi-

tion numbder of correlation matrix which is given by

— [Amax 4
¢ 1

where
¢ =the condition number of the ith eigenvalue,
Amax-=the largest eigenvalue of the correlation
matrix, and
A, =the ith eigenvalus of the correlation matrix.
A large condition number is evidence that the
regression coefficients are unstable, When the condi-
tion number exceeds 30, multicollinearity should be
suspectec (Belsley ef al. 1980). Table 4 shows that

the smallest eigenvalue in this study had a condition

Table 3. Variance inflation factor analysis for the
fit data set.

Variable Variance inflation factor
17A 2221
IniHa) /A 120.8
IntNY/A 14.5
In(Hy) 18.8

Table 4. Condition numbers and variance propor-
tions for the fit data set as multicollinear-
ity diagnostics.

. . Variance proportion
Eigen- Condition P

value number /A ln‘j':i;‘ld, ]n/z;“:) IniH,)
3.767380 1.0000 06.0003 0.0006 0.0046 0.0033
0.177395 4.6084 0.0006 0.0115 0.0090 0.2114
0.052379 8.4809  0.0075 0.0270 0.9475 0.0214
0.002846 36.3821 0.9916 0.9609 0.0389 0.7640

number of 36.38, signifying a multicollinearity
problem.

[t should be emphasized that a serious multicol-
linearity does not deposit its effect on only one regres-
sion coefficient. The variance decomposition propor-
tions should be analyzed to determine what proportion
of the variance of each coefficient is attributed to each
dependency . The variance decomposition proportions
are computed as follows :

pii= (V3 /40 Jaw

A

where

p:i =variance decomposition proportion of by,

v;;=the ith element in the eigenvector associated
with the jth eigenvaiue,

A;=the jth eigenvalue, and

ci=Var(b)/o®,

According to the analysis of variance proportions in
this study (Table 4). the precision of estimating
regression coefficients for 1/A and IntHgl /A was
damaged by the linear dipendency with high variance
proportions for the smallest eigenvalue . It seems that
the variable In(Hy does not have a lot of variation.
Thus, based on the analysis of variance proportions,
the variables 1/A and IntHgy) /A basically seem to be
the same.

From the above diagnostics, some multicollinear-
ities were detected in the data. As a result, an alter-
native estimation method to OLS should be recom-
mended for the yield prediction model.

Ridge Regression

The performance of the ridge regression estimator
depends on how well the ridge parameter k is deter-
mined. Obviously, in yield prediction models with
multicollinearity, the prediction capability should be
improved by using an appropriate value for k. In this

study, two criteria for choosing k were Mallows's
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11973) C,-like statistic, and Allens's (1974} PRESS

-like statistic, Mallows's criterion in a ridge regres-

sion context is
C.=SSE,/&*n

where

+2+2tr (H,) 6)

SSE, =the sum of squared error using ridge regres-
sion,
62=the mean squared error from OLS estimation,
n=number of observation,
H. =hat matrix in ridge regression, which is
computed by X{(X'X+kl) 'X’, and
triH,) =trace of the hat matrix for ridge regres-
sion,
The PRESS-like statistic, a modification of Allens's
PRESS, used in this study is given by
n -
PR{Ridge: =1 n X Te? i (1-hyy, % s
i=1
where
e.. . ==the ith residual for specific value of k, and
hi., . =the ith diagonal elements of hat matrix,
Most ridge regression is applied to the standardized
fornt of the model . The ridge estimator 11" in standar-
dized form is given by

b*er = ‘R =kl 'y, i8]
where

R.,.=the correlation matrix of indendent variables,
end

r., =the vector of simple correlation of the in-
dependent variables and the dependent variable,

For different values of k from 0 to 1, the two
criteria C, statistic, and PR(Ridge: were computed
using the standardized from of the data. A value of k
which minimized the statistic was chosen for each
criterion, The parameters of the yield prediction
model were then estimated from the equationig},
resulting in two vield equations,

Evaluation criteria

Parameter estimates of the yield prediction model
were obtained from the fit data set using each of the
ridge estimation methods. In addition, the OLS tech-
nique was employed to estimate the parameters of the
model . Thus, three final equations were evaluated to
determine which method provided the “best"results in
terms of prediction performance of the model under

the multicollinearity situation.

To evaluate the estimation methods, candidate
estimators were compared based on the following
three evaluation criteria.

1. Mean difference, which is a measure of bias of a

model .
_ n
Diff=1/n} = Diff,
1=1
where

Diff,=v,- ¢, =difference between the ith observed

and predicted volume per hectare, and

n=the number of observations.

oo

Mean absolute difference, which is a measure of
precision of a model.
n

| Diff | =(1/n* £ . Diff,

i=1
3. Mean squared difference, which is similar to the
mean absolute difference, but is more sensitive
to outliers.,

- n
Diff*=:1/nm} 3 (Diff)?
i=1

These statistics were computed separatelv for the
test data and the pooled data ‘both fit and test data
sets) . The test data represented an independent data
set, whereas the pooled data were regarded as the
representative of the population.

The evaluation criteria were computed based on
volume per hectare rather than the logarithm of vol-
ume which was the dependent variable in the yield
model. This was because volume per hectare was
really the variable of interest.

The final three equations were ranked relative to
one another based on each criterion, with rank 1
corresponding to the smallest value. Then the overall
rank was calculated as the sum of the ranks over three
criteria. The “best”system of yield prediction equa-

tion was the one with the smallest overall rank .

RESULTS AND DISCUSSION

The minimum values for C,, and the PRESS-like
statistic were obtaned when k was 0.00013. and
0.00065, respectively. These k values were conserva-
tive (close to zero) . Hocking (1976 reported that for

his data, C, statistic was more conservative in
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preducing a smaller k value than the ridge trace and
VIF criteria. In this study, the PRESS-like criterion
produced the least conservative (largest k) biased
estimation of the coefficients.

Three sets of coefficients of the yield prediction
model {2) were obtained from the fit data set (Table
5). The three estimation methods were OLS, two
ridge estimators based on different criteria of choos-
ing k. The results of evaluation on the test data set
and the pooled data set are presented in Table 6.

The ranks based on the three criteria are presented
in Table 7. The overall ranks were similar for both
the test data set and pooled data set, indicating that
each estimator performed consistently for an indepen-
dent data as well as the population .

For both validation data sets, ridge estimators
performed better than QLS estimators. Especially,
the C, criterion produced the best improvement in
prediction capability of the model, The PRESS-like
Table 5. Parameter estmates of the yield predic-

tion model from three different estima-
tion methods,

. ; Parameter estimates
Estimators &/

b, b, b, bs b,
OLS 0.2038 -61.7273 3.0816 B8.763> 1.8884
C. 0.0998 -59.9155 2.6386 8.7320 1.9162
PR P
‘Ridge: -0.2487 -53.9804 1.2856 B8.6080 2.0048
Notation :

LS=O0rdinary least squares estimator,
C, = Ridge estimator based on Mallow's

11973} statistic (k=0.00013), and
PR {Ridge} =Ridge estimator based on Appens's
11974) PRESS-like statisticik =0 00065

statistic also provided some improvements of predic-
tion over the OLS and ranked second, in both valida-
tion data sets (Table 6). However, the ridge
estimators gained 1.2 to 3.8 cubic meter per hectare
in mean difference and mean absolute difference for
both validation data sets. This amount of improve-
ment by ridge estimators over OLS estimators may
not be meaningful in the applications for small areas.
These results were similar to those obtained by
Delaney and Chatterjee (1986}, who compared ridge
estimators to OLS estimator through Monte Carlo
simulations. They concluded that, for the predictive
ability, the OLS estimator performed as well as the
ridge estimator from PRESS-like statistic, Judge ef
al . (1988} also discussed a near-exact multicollinear-
ity situation in which the ill effects of small
eigenvalues were cancelled out, resulting in good
predictions from the OLS estimator.

However, vield prediction models are usually
applied to large areas. Thus, this study showed that
the use of ridge estimators provides the meaningful
improvement of precision for the yield prediction

when data have a multicollinearity problem

CONCLUSION

This study was conducted to select the “best” esti-
mation method of linear regression yield models with
multicollinearity, Attention has been focused on
biased estimation techniques for dealing with
multicollinearity . Two ridge estimators were compar-
ed to select the best estimator in predictive ability of

vield models with the QLS estimator,

Table 6. Evaluation statistics from three estimtion methods for the test data set and the pooled data set.

............... Test data set ------

--------------- Pooled data set -~

Estimator Diff &/ Diff |b/ Diff & Diff | Diff | Diff?
aLs 8.22 27.3 763.5 10.61 29.1 837 .4
Cu 7.09 24.1 711.2 9.01 25.3 783.9
PR {Ridge) 7.16 25.2 739.3 9.66 26.8 790.7
 —— n
& Diff= 1/n) _2 Diff,, where Diff,=y;-v,=difference between the ith observed and predicted volume per
1=1 hectare
b/ — n
T IDiff | =(1/n) = | Diff. | .
i=1
</ n

Diff*’=(1/n} 3 (Diff,)2.
i=1
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Table 7. Ranks of evaluation statistics from three estimation methods for the test data set and the pooled data

set .
--------------- Test data set ~-ooveveeneens i Poolled data set -ooveeeeeens
o Rank  Overall
Estimator Diff | Diff Diff*  Total  Diff i Diff | Diff?  Total sum rank
OLS 3 3 3 9 3 3 3 9 18 3
C. 1 1 1 3 1 1 1 3 6
PR (Ridge: 2 2 2 6 2 2 2 6 12 2

a

Number to represent relative performances of three estimation methods {1 being the best and 3 being the worst: |
The overall ranks were determined by the sum of the ranks over three evaluation statistics.

Based on three evaluation statistics, ridge
estimators were better than the OLS in their perfor-
mances. However, care should be focused on the
method of choosing ridge parameter k. In this case,
the choice of k in ridge regression should he restricted
to prediction-oriented selection criteria such as C,,
and PRESS-like statistics.

Ridge estimator with k based on the C, statistic was
the “best” in the predictive ability, This ridge
estimator thus can be recommended as an alternative
to the QLS estimator when there exists multicollinear-

ity in the data for yield prediction models.
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