A Radon-Nikodym Derivative of the Product Measure

Byung-Moo Kim

Graduate School, Dankook University, Seoul, 140-714, Korea

1.Introduction

The purpose of this note is to sketch how a Radon-Nikodym derivative of the product measure is represented.

To prove the main result, we will introduce some definitions and theorems. Notations and definitions used in this note are collected in [1], [2] and [3].

Theorem 1.1 (Radon-Nikodym theorem). Let (X,S) be a measurable space and let μ and ν be finite measures on (X,S). If ν is absolutely continuous with respect to μ , then there is an S-measurable function $g:X\to [0,\infty)$ such that $\nu(E)=\int_E g d\mu$ holds for each E in S.

The function g is unique up to μ -almost everywhere equality.

In the Theorem 1.1 an S-measurable function g on X that satisfies $\nu(E) = \int_E g d\mu$ for each E in S is called the Radon-Nikodym derivative of ν with respect to u, which is denoted by $\frac{d\nu}{du}$.

We now consider the product measure.

Definition 1.2: If (X_1, S_1, μ_1) and (X_2, S_2, μ_2) are finite measure spaces, then the set function λ , defined for every set E in $S_1 \times S_2$ by

$$\lambda(E) = \int \mu_2(E_{x_1}) d\mu_1(x_1) = \int \mu_1(E_{x_2}) d\mu_2(x_2),$$

is a finite measure with the property that, for every measurable rectangle $A_1 \times A_2$,

$$\lambda(A_1 \times A_2) = \mu_1(A_1) \cdot \mu_2(A_2).$$

The measure λ is called the *product* of the given measure μ_1 and μ_2 , and is denoted by

$$\lambda = \mu_1 \times \mu_2$$
;

the measure space $(X_1 \times X_2, S_1 \times S_2, \mu_1 \times \mu_2)$ is called the *Cartesian product* of the given measure spaces.

Proceeding by mathematical induction we can define the Cartesian product of finite measure spaces (X_i, S_i, μ_i) , i = 1, 2, ..., n, there is one and only one measure μ (denoted by $\mu_1 \times \mu_2 \times \cdots \times \mu_n$) on $S \times \cdots \times S$ such that $\mu(A_1 \times A_2 \times \ldots A_n) = \prod_{i=1}^n \mu_i(A_i)$ for every measurable rectangle $A_1 \times A_2 \times \cdots \times A_n$.

The classical product measure theorem in [3] extends as follows;

Theorem 1.3. For each $i=1,2,\ldots$, let (X_i,S_i,μ_i) be an arbitrary probability space. Let $X=\times_{i=1}^{\infty}S_i$, $S=\times_{i=1}^{\infty}S_i$. There is a unique probability measure μ on S such that $\mu\{X\in S:X_1\in A_1,\ldots,X_n\in A_n\}=\prod_{i=1}^n\mu_i(A_i)$ for all $n=1,2,\ldots$ and all $A_i\in S_i$, $i=1,2,\ldots$

We call μ the *product* of the μ_i , and write $\mu = \prod_{i=1}^{\infty} \mu_i$.

2. Main result

Now we need the following lemma,

Lemma 2.1. Let (X_1, S_1) and (X_2, S_2) be measurable spaces, let μ_1 and ν_1 be finite measures on (X_1, S_1) , and let μ_2 and ν_2 be finite measures on (X_2, S_2) , if ν_1 is absolutely continuous with respect to μ_1 and ν_2 is absolutely continuous with respect to μ_2 , then $\nu_1 \times \nu_2$ is absolutely continuous with respect to $\mu_1 \times \mu_2$.

Proof: If $(\nu_1 \times \nu_2)(A_1 \times A_2) = 0$ for any measurable set $A_1 \times A_2 \in S_1 \times S_2$, then $\mu_1(A_1) = 0$ or $\nu_2(A_2) = 0$ for $A_1 \in S_1$ and $A_2 \in S_2$. Hence $\mu_1(A_1) = 0$ or $\mu_2(A_2) = 0$,

$$(\mu_1 \times \mu_2)(A_1 \times A_2) = \mu_1(A_1) \cdot \mu_2(A_2) = 0$$

Therefore $\nu_1 \times \nu_2$ absolutely continous with respect to $\mu_1 \times \mu_2$.

We write $\nu \ll \mu$ if ν is absolutely continous with respect to μ .

Theorem 2.2. Let (X_i, S_i) be measurable spaces, let μ_i and ν_i be finite measures on (X_i, S_i) where $i = 1, 2, \ldots, n$. If $\nu_1 << \mu_1, \nu_2 << \mu_2, \ldots, \nu_n << \mu_n$, then

$$\nu_1 \times \nu_2 \times \cdots \times \nu_n \ll \mu_1 \times \mu_2 \times \cdots \times \mu_n$$

Proof: Clear from the Lemma 2.1.

Now we will show how a Radon-Nikodym derivative of the n-dimensional product measure is represented.

Theorem 2.3. Let (X_i, S_i) be measurable spaces, let μ_i and ν_i be finite measures on (X_i, S_i) and $\nu_i << \mu_i$, $i=1,2,\ldots,n$.

Then a Radon-Nikodym derivative of the product measure $\nu = \nu_1 \times \nu_2 \times \cdots \times \nu_n$ with respect to $\mu = \mu_1 \times \mu_2 \times \cdots \times \mu_n$ is represented by

$$\frac{d(\nu_1 \times \nu_2 \times \cdots \times \nu_n)}{d(\mu_1 \times \mu_2 \times \cdots \times \mu_n)} = \frac{d\nu_1}{d\mu_1} \cdot \frac{d\nu_2}{d\mu_2} \cdots \frac{d\nu_n}{d\mu_n}.$$

Proof: Since $\mu_1 \times \mu_2 \times \cdots \times \mu_n$ and $\nu_1 \times \nu_2 \times \cdots \times \nu_n$ are finite measures on

$$(X_1 \times X_2 \times \cdots \times X_n, S_1 \times S_2 \times \cdots \times S_n)$$

and $\nu_1 \times \nu_2 \times \cdots \times \nu_n \ll \mu_1 \times \mu_2 \times \cdots \times \mu_n$. By the Radon-Nikodym theorem on a product measure space, there is an $S_1 \times S_2 \times \cdots \times S_n$ -measurable function $G: X_1 \times X_2 \times \cdots \times X_n \to [0,\infty)$ such that

$$(\nu_1 \times \nu_2 \times \cdots \times \nu_n)(A_1 \times A_2 \times \cdots \times A_n) = \int_{A_1 \times A_2 \times \cdots \times A_n} Gd(\mu_1 \times \mu_2 \times \cdots \times \mu_n)$$

for $A_i \in S_i$, i = 1, 2, ..., n.

On the other hand, since $\nu_i << \mu_i$ for each *i*, there is a unique S-measurable function g_i such that $\nu_i(A_i) = \int_{A_i} g_i d\mu_n$ for $A_i \in S_i$, i = 1, 2, ..., n. Hence

$$(\nu_1 \times \nu_2 \times \dots \times \nu_n)(A_1 \times A_2 \times \dots \times A_n) = \nu_1(A_1)\nu_2(A_2)\dots\nu_n(A_n)$$

$$= \int_{A_1} g_1 d\mu_1 \int_{A_2} g_2 d\mu_2 \dots \int_{A_n} g_n d\mu_n$$

$$= \int_{A_1 \times A_2 \times \dots \times A_n} Gd(\mu_1 \times \mu_2 \times \dots \times \mu_n).$$

Therefore a Radon-Nikodym derivative of the n-dimensional product measure can be represented by

$$\frac{d(\nu_1 \times \nu_2 \times \cdots \times \mu_n)}{d(\mu_1 \times \mu_2 \times \cdots \times \mu_n)} = \frac{d\nu_1}{d\mu_1} \cdot \frac{d\nu_2}{d\mu_2} \cdots \frac{d\nu_n}{d\mu_n}.$$

An extension of a Radon-Nikodym derivative to an infinite dimensional product measure is followed by Theorem 1.3 and the above.

References

- 1. D. L. Cohn, "Measure Theory," Birkhäuser, Boston, 1980.
- 2. P. R. Halmos, "Measure Theory," Springer-Verlag, Berlin, 1974.
- 3. R. B. Ash, "Measure, Integration, and Functional Analysis," Academic Press Inc., New York, 1972.