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A Brownian dynamics method is proposed for simulating the coupled translational and rotational diffusive motions of non-
spherical Brownian particles. Results of test simulations to assess the accuracy of the algorithm are presented.

Introduction

Since the pioneering work of Simon and Zimm,' the sto-
chastic dynamics (SD) method has been a rapidly growing
branch of computer simulation methods for many-particle
systems, including liquids, solids, and macromolecules. The
algorithm used by Simon and Zimm neglected the inertia
term in the Langevin equation and assumed that the random
force remains constant during each time step, 4. Obviously,
physical situations that satisfy these two conditions simul-
taneously are quite rare. More rigorous algorithms were ob-
tained for the case, 4¢ <7, by Weiner and Forman?, and
for the case, A¢ > ™', by Ermak®; here ™! is the velocity
relaxation time of a Brownian particle. Subsequently, Ermak
and Buckholtz* derived an algorithm in which Af is not res-
tricted with respect to the magnitude of 7"'. However, all the
algorithms cited so far are restricted by the condition that the
systematic force upon a Brownian particle does not change
appreciably during A?. Allen® and independently van Gunste-
ren et al.° proposed third order algorithms which allow linear
variation of the systematic force during Af. However, at
least in the diffusive regime (f.e., 4¢ > 7Y, these third order
algorithms may lead to erroneous results.” Other lines of ge-
neralization of the SD methods have been to include the ef-
fects of hydrodynamic interactions between Brownian par-
ticles® or memory effects in the correlation of stochastic
forces upon the Brownian particles.**"! Algorithms based
on the ordinary Langevin equations are called Browmian
dynamics (BD) methods, and those based on the generalized
Langevin equations are called generalized Brownian dyna-
mics (GBD) methods. All these methods are valid for the
cases where the Brownian particles are more massive than
the solvent molecules, although for GBD this restriction is
relaxed. Montgomery ef al." derived an impulsive stochastic
dynamics method that is applicable to the case where the
particles of primary interest are less massive than solvent
molecules.

In this paper, we present a BD method for simulating the
dynamical behavior of a system of N interacting nonspherical
Brownian particles in the diffusive regime [f.¢., for the casein
which the time step size is much larger than the relaxation
times of translational and rotational velocities]. Although hy-
drodynamic interactions between Brownian particles are in-
corporated into the algorithm, the tack of any explicit expres-
sion for the hydrodynamic interaction tensor for nonspheri-
cal particles will enforce the neglect of them in actual appli-
cations. However, the hydrodynamic interactions between
parts of a Brownian particle which result in the coupling be-
tween translational and rotational diffusion of the particle™

are included. Recently, Dickinson et a!.™ proposed a similar
BD algorithm for systems of spherical particles with spin.
However, their algorithm for rotational motion is incomplete.
The three “moving-on” angles in their algorithm are the
angles of rotations around the three body-fixed axes. Such
angles are meaningful only for the infinitesimal rotation. In
this paper, we present two algorithms for simulating the
finite rotational movements that occur in the diffusive
regime. In one algorithm, Euler angles are used as the ori-
entational coordinates, and in the other nine components of
the three hody-fixed orthonormal vectors are used together
with six orthonormality conditions among them. Detailed
descriptions of the algorithms are presented in the next sec-
tion, and results of test simulations to assess the accuracy of
both methods are given in the final section.

BD Algorithms

A. Coupled Translational and Rotational Langevin
Equations. The system under consideration consists of N
Brownian particles with arbitrary shape which are immersed
in a viscous incompressible solvent continuum. The particles
may be subject to configuration-dependent force due to in-
terparticle interactions or external fields. The particles are
also subject to velocity-dependent hydrodynamic interac-
tions. The coupled translational and rotational Langevin
equations governing the dynamics of this system are'>'®

(o o/ &) ron= 1 (A /) 0 X PR,0, @1

» »
= -E‘ f:JT'UJ"ElEER' &'1+F:T+R:

(dL;/dt) ae— (dLs/dt) ¢+wa>‘<fu (2.2)
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Here m, b, »,, and L;are the mass, velocity, angular velo-
city, and the angular momentum of the i~th particle, respec-
tively. (d/d#),,, denotes the rate of change in o;or L;measured
in the space-fixed coordinate system, and {d/dY); denotes the
corresponding quantity measured in the body-fixed coor-
dinate system attached to the particle i. Terms involving the
configuration-dependent friction—tensors §J7, §7R ¢ X7 and
§ % represent the frictional retardation of the particle veloci-
ties due to the viscous medium. F7 (F7) is the sum of inter-
particle and external forces (torques) acting on the ¢-th par-
ticle. RT (RD represents the randomly fluctuating force (tor-
que) exerted on the i-th particle by the surrounding fluid.
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The statistical properties of these random forces and torques
are related to the friction tensors by fluctuation-dissipation
theorem 1%16;

<RI >=<R})>=0 @2.3)
<RIDRPUE)>=2k,Te®s(t—t") (0, p=T R) 2.4)

where the tilde over R} denotes the transpose and thus R? is
a row vector. The IlOt&thl‘l R, R" represents a dyad product
In the presence of systematic forces FT and F¥, a term in-
volving the correlation function between the systematic
forces and the velocities b;and w ;should perhaps be added to
the right hand side of Eq (2.4).7 For spherical particles,
however, it has been shown numericalty that the contribution
from this additional term is negligible.'®

In the diffusive regime (f.¢., in a highly viscous medium),
the inertial terms in Eqgs. (2.1) and (2.2) can be neglected, and
we have

o= (kD)™ DJT-(FI+R))
+Z, (kT DI -(FP+RY) .5)

w=E (kD) DI -(F]+R) + £ (byT) DI (F*+RY
2.6)

Here the various diffusion tensors are related to the friction
tensors by the generalized Einstein relation %

D=l T(6™) @.7)
where the matrix inverse is defined by
HETR 6510y 2.8)

and the labels @, 8, and y refer to translation(T") and rotation
(R). 1in the 3 x 3 unit matrix.

B. Derivation of the BD Algorithm in the Diffusive
Regime. In the present algorithm, we are concerned with
calculating the changes in positions and orientations of the
particles over a short time step A# during which F remains
essentially constant. However, 4¢ must be much larger than
the correlation times of velocities v, and «; for Eqgs. (2.5) and
(2.6)to provide a valid description of the dynamical behavior
of the system on the time scale longer than Atf.

First, it is convenient to introduce the grand velocity vec-
tor ¥, grand force vectors F, and R, and grand diffusion
matrix D as follows:

) (R (R
Wy I'T R:
v=| : F=| : R=| : @2.9)
O Fy R,
L wy) LF:J (R}
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Then we can rewrite Eqs. (2.3)-(2.8) in the form

= (kT)'D- (F+R) 2.11)
R(H)>=0 (2.12)
ROR(')>=2k,TES (t-¢') {2.13)
D°.==:°D=ks {2.14}

Here the 6N x 6N grand friction matrix S has N2 blocks,
each of which is a 6 x 6 matrix; e.g., the #~block has the fol-
lowing elements

T TR
P
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and I is the 6N x 6N unit matrix.
Generation of the Displacement Vector Ay @)
We define the displacement vector AX{t,) by

Ax(t..}zf'“" V) dt  with by, =t,+AtL
tn
2. 15)

Here it must be noted that, of the 6N components of AY, the
3N components related to angular displacements of particles
are physically meaningful only if they are much smaller than
7, Then from Egs. {(2.11)~2.15), we can show that

Ayt =Ax*(t)+Ax" () 2. 16)
Ar ) =<Ax(t)> (2.17)

= (ks T)'D (1) - F (t,) At+O((AH)*)
<AY (t)>=0 (2.18)

<A (DAY (L) >=2D(£) A)HO({A)*)  (2.19)

The 6N components of the random displacement vector AY®
with the statistical properties given by Egs. {2.18) and
(2.19) can be obtained as follows.® First, we generate 6N
Gaussian random deviates'® 4; G = 1,2,...,6N) with <A4,;>=
0 and <AA;>= 2445, We can then write

AY(t)=8-4 {2.20)

Here 4 = (4 t» Ap.-.., Agy) and the components of § are given
by

Su=t (Dt ] 4 £ i {2.21)



A Brownian Dynamics Method

Su’ {

1 (D e,JJ,,—?_‘  SuSl/S, for i>]

.. 2.22
0 for 1<y 2.z

Move Algorithms for the Spatial Coordinates {r;}
Since dr/dt = v;, we have

rdtan) =it + [ ™ ot

(A X)&en1er
=r{t)+ | (AX) weaee [ TOUADY) 2.23)
(A7) wevss
(1=1,2,-,N)

where we have used Eqgs. (2.9) and (2.15) to obtain the second
line.
Move Algorithms for the Orientational Coordinates
There are several alternatives for the choice of orienta-
tional coordinates. The most common choice makes use of
the Euler zlnglf:sz'J (ap By li= 1,2,...,N). The components
of the angular velocities along the axes of space-fixed coor-
dinate system are related to the rates of changes in the Euler
angles by?!

a
;91 = Es'wt
2

(f=12,,.N) (2.24)

where dots over the Euler angles denote the differentiation
with respect to time, and Efa;, 8) is given by

, —cos@ cose, —cosfsing, sing,
E- 'ﬁ -sing,sina; —sinfcosa; 0 {2.25)
$
cosa, sina, 0

Intergrating Eq. (2.24) over ¢ from /,to £,,, and using Egs.
(2.9} and (2.15), we obtain

ai{ t&ﬂ) at( o (41’) -1+
Bltnd) | = Bltd | TEL(E) | (BX) we-vs +0[a4*)
Yitnn) 782 (A2) ws-1+s

(2.26)

To avoid the divergence of 1/sin 8;in E;as 8, approaches (
or z, we need to use two space-fixed coordinate systems
which have the same y-axis but are rotated by +#/2 around
the y~axis from each other, and then to change the space—fix-
ed coordinate system associated with the #~th particle when-
ever §;comes within /10 of 0 or 7%,

Another choice for the orientational coordinates for the
i-th particle consists of the nine components of the three
body-fixed orthonormal vectors {%; 7, z). These nine com-
ponents are interdependent through the orthogonality and
normalization relations; g;v; = 8,, (v = %,%.2). The time deri-
vatziaves of these vectors are related to the angular velocity o
by
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dufdt=wXa  (u=%3,2) @.27)
Integrating Eq. (2.27) over ¢ from £, to £, , and using Egs.
(2.9} and (2.15}, we obtain

(AX) wrues
itk o) =2l t) | (A1) s | X At 20 +0WA H*] @2.28)
(AX) qo-u+e

The orthonormality relations may not be satisfied after seve-
ral moves due to the numerical inaccuracy for a finite size of
At. To avoid this problem, the following move algorithm is
used.

(i) Move z{;,) and x4¢,) according to Eq. (2.28) to obtain
2, . and 2}, . )-

(ii) Normalize 3¢, , ) to obtain 22, , ).

(iti) Orthogonalize £X¢, ) with respect to 24, . 1) by useof
the relation, £ = x}-2£2;%}.

(iv) Normalize x{¢,, ;) to obtain x££, , ).

(v) Find y{¢,,,) from the relation, y;= 2; x £,

Calculation of the Components of D{¢,)

In order to calculate 4x{f,), we need to know the compo-
nents of D{t,) which are functions of the positions and orien-
tations of the Brownian particles at ¢,. General expressions
for the interparticle diffusion tensors Df%a, § = T,R; i*j) for
particles with arbitrary shape cannot be given, since they de-
pend on the shape of particles as well as the relative separa-
tion and orientation of particles { and j. For spherical par-
ticles of uniform surface roughness, “Oseen’s approxima-
tions” for the interparticle diffusion tensors which keep only
the lowest order terms in the reciprocal of interparticle sepa-
ration, 7', were given by Wolynes and Deutch'®. Higher
order expressions have been presented recently by Mazur
and van Saarloos.?* Expressions for the self diffusion ten-
sors, Di¥a, 8 = T,R), also involve terms arising from inter-
particle hydrodynamic interactions.? Neglecting those terms
which are higher order in 77}, we can write®

DP=T:D T, (ap=TR) (2.29)
Here D is the representation of the diffusion tensor in the
particle-fixed coordinate system and is independent of the
position and orientation of particle 7. It thus needs to be cal-
culated only once before starting the simulation. Numerical
procedures for calculating D were reviewed by Garcia dela
Torre and Bloomfield.?® The orthogonal transformation
matrix T is given by

Ti=

cosa, CosB, Cosy — Sina, Siny,
—CoSa, COSA;s siny, —sine, CosY,

cosa, Sing,
sina,; Cos#, Cosy, +Cosa, siny, ~ 8ing; COSY,
—sina, C0SP,; siny, +cosa; €087, sing, siny,
sma, sing; C0s8;
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(), (R, (%),
- (5’31 (j'e): {5'): &.30)
(2), (2); (2),

where (4),, (), and (i1); are the component of 7 { u= %,9,2)
with respect to the space-fixed coordinate system.

Test Simulations

To test the accuracies of the BD algorithms, we have cal
culated two long trajectories for an axially symmetric parti-
cle with (D™7),=43.1 A’ms, (D) = (D™7),=37.7 A%ms,
(D*), =1.45 ns™, and (D®®), = ("), = 0.680 ns™’. These
values correspond to those for 2 dimer made up of two sphe-
rical subunits with radii = 4 A in water at room temperature,
The reason for choosing this system is that any systematic
errors due to inaccuracies of algorithms can be determined
since we have exact expressions for the distributions of sta-
tistical errors in the translational diffusion coefficient and in
the orientational correlation function of the symmetry axis
calculated from BD trajectories?; these errors arising from
the replacement of the ensemble average by a finite time
average are unavoidable. The length of each of the two tra-
jectories is 100 ns. One of them has been generated by using
the Euler angle algorithm, and the other by using the body-
fixed vector algorithm. For both trajectories, 4¢= 0.2 ps has
been used.

To examine the distributions of statistical errors, each of
the trajectories was divided into 100 parts. From each part,
we caiculated the translational coefficient,

DAY= (r()—r(0))3/6¢ (3.1)

and the correlation function associated with reorientation of
the symmetry axis,

Cdh= (%0)-49), @.2)

where the subscripts r signify the time averages over a tra-
jectory of finite length r (=1 ns). If the BD algorithms are
correct, as r—oo these values should converge to

D.(t)= lim D{=(Tr D™)/3 3.3)
@ =lim C{f)=exp(—2D:0) (3.4)

where D® =(D*®),. For finite r, the standard deviations of er-
rors are given by

o= (LD =D =2/ 1= 3.5)
or={(C4D —CLD)) v =

1 Ly 648 e
_-DxT’“ D:r) {16+D;r}eiﬁ 6D;¢)

24Dt
L]
+[12(1~—7') —4SD:t+2£i + D,g ) exp(—4 Dft}H}
T xT

(3.6)
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Table 1. Distributions of Errors in D(t) and C(t) Calculated from
the Trajectory Obtained by Using the Euler Angle Algorithm

% errors lying in the range<
‘m) dr[ ¢) slfr 67‘(4:{‘)‘2’1‘ 2#:-(44”‘301 31,-(4,“}540;
0.001 65 26 7 2
0.005 69 24 6 1
0.020 65 30 4 1
0.100 61 30 8 1
0.500 68 27 1 4
% erros lying in the range?
AnS) 4.0t Sox 02<AME) S204 204<82 1S 30, B0s<dalf) Sdo,
0.001 56 3 9 4
0.005 70 22 8 0
0.020 65 27 8 0
0.100 62 33 4 1
0.500 68 25 7 0
Nomal
distribution 93 26.2 4.3 0.2

AN =D =D A =GB — Ch )]

Table 2. Distributions of Errors in D{t) and Ce(t) calculated from
the Trajectory Obtained by Using the Body-Fixed Vector
Algorithm.

% errors lysing in the range®
Ans) 4,80y 0r<ANE) 820, 20,< A0S 30, 30,<A ) Shoy
0.001 66 25 9 0
0.005 74 19 6 1
0.020 64 3 4 1
0.100 60 31 8 1
0.500 68 27 S| 4

% errors lying in the range? .
Aas)  AudD)se, 0a<da4lt) 520, 202 <A4)K30, 30,<Adalt) K40,

¢.001 61 26 8 5
0.005 57 38 3 2
0.020 64 32 3 |
0.100 71 24 4 1
0.500 64 33 2 i
Normal
distribution 69.3 26.2 4.3 0.2

BAE)=| Dl 2} =D A6 = CLB —CAD |+

Table 1 and 2 show the distributions of errors in D«(# and
C(9) calculated from the 100 parts of trajectory obtained by
using the Euler angle algorithm and the body-fixed vector
algorithm, respectively. We see that the error distributions
are in quite good agreement with the normal distribution.
These results confirm the accuracies of both algorithms.

Apptications of the present BD algorithms to investigate
the hydrodynamic properties of segmentally flexible macro-
molecules such as immunoglobulins and the reaction dyna-
mics of diffusion-influenced enzyme-substrate reactions are
the subjects of future work.
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Different Mode of Cytochrome ¢ and Apocytochrome ¢
Interactions with Phospholipid Bilayer
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Cytochrome ¢ induces fusion of phosphatidylserine fphosphatidylethanolamine vesicles while apocytochrome ¢ does not have
a fusogenic capability despite the fact that the apoprotein binds to the vesicles more extensively. In order to see whether the
difference in the fusogenic behavior comes from the topological variation in membrane bound proteins. the holoprotein and
apoprotein were labeled with phenylisothiocyanate, a hydrophobic label, in the presence of its hydrophilic analogue p-sulfo-
phenylisothiocyanate. Apocytochrome ¢ was labeled with the hydrophobic probe more extensively than the cytochrome ¢,
indicating that the apoprotein penetrates deeper into the bilayer than cytochrome ¢ does. The translocation experiments of
these proteins by trypsin entrapped vesicles further supported this conclusion.

Introduction

The studies on fusion of phosphatidylserine/phosphati-

dylethanolamine (PS/PE, 1:1, mol/mol) vesicles induced by

*To whom correspondence should be addressed.

a-lactalbumin 3 and lysozyme* suggested that surface pene-
tration of small protein segments is important for the pro-
cess. Apocytochrome ¢ (Apo ¢) binds more extensively to
PS/PE vesicles and a longer stretch of it is protected from
the proteolysis of the protein-vesicle complex as compared



