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ABSTRACT

A new approximation method is proposed for the ARL of CUSUM chart which is based on the
log probability ratio statistic. This method uses the condition of before-stopping time to derive the
expectation of excess over boundaries. The proposed method is compared to some other approximation
methods in normal and exponential cases.

1. Introduction

Suppose that a series of independent observations are observed sequentially from a certain process
and the distribution of the process may change at an unknown point in time. One of the main objectives
of control chart is to detect a change in distribution as soon as possible after its occurrance. One
standard procedure for detecting a change in distribution is Shewhart chart originnted by Shawhart
(1931). Another standard procedure is the cumulative sum(CUSUM) chart proposed by Page(1954).
The CUSUM chart accumulates information with time so that it may be more sensitive than Shewhart
chart which regards observations separately.

Let {Xi, i=1, 2,--} be independent random variables with density f(x ; 8) where 8 usually denotes
the quality of the process. The process {Xi, i=1, 2,-'} is said to be in-control if 6=, and out-of-
control if 6=6,(>>8,). For convenience, only positive shifts of the parameter 0 are considered and
the subset of parameter (8, 0,) is regarded as an indifference zone.

When 6 denotes the mean of the process, the CUSUM procedure for detecting a positive shift in
0 is defined as follows . set

W,=% (X—k) —min £ (Xi—k) (1.1)
=1 oI<n i=1

and define the stopping time as
N=min {n: W.=hj, (1.2)

at which an out-of-control signal is called, where k and h are suitably chosen constants and
z Xi—k=0.
i=1
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The efficiency of a control chart is measured in terms of the expected stopping time, which is usually
referred as the average run length (ARL). If two different control charts have the same ARL at =6,
and different at 8=80,, the one with smaller ARL at =0, is called more efficient than the other.

This paper is arranged as follows. Section 2 defines the CUSUM chart based on the log probability
ratio statistic (LPRS) as an optimal stopping rule in some sense. In Section 3, a general approximation
method is proposed for calculation of ARL of the CUSUM chart defined in section 2. In section 4
and 5, the method proposed in section 3 is compared to the other approximation methods in normal
and exponential cases. Section 6 gives conclusions and remarks.

2. A CUSUM Chart Based on LPRS

Suppose that X;, X,,+:* are i.i.d. random variables which are observed sequentially. Let Xi,--,
X1 have density f(x 5 6,) while Xn, Xu+1, -+ have density f(x 5 0,) (6,.>8,) where the time of change
m is unknown. For m=1, 2,---, let P. denote the distribution of the sequence Xi, Xi, *** under which
X. is the first term with density f(x; 6..

One popular method for detecting a change in distribution from f(x 5 o) to f(x 5 6,) is Page’s(1954)
approach based on the probability ratio consideration.

Let the LPRS at i-th time be

iv 0
>i=log “'jf?((;,—e‘; 2.1

Then the CUSUM procedure base on Z ié defined as follows : set

n !
T.=X Z—min X Z; (2.2)
i=1 0<i<n =1

and define the stopping time as
N=min {n: T.=2h} (2.3

0
at which an out-of-control signal is called, where h is a suitably chosen constant and X Z;=0.

i=1
Lorden(1971) formulated a problem of optimal stopping for detection of a change in distribution
by defining

EN= sz;p less sup En {IN—m+D" | X1, Xui}]l (2.4)

where E, denotes expectation under P. and (x)*=x, 0 if x>0, <0.

Moustakides(1986) showed that Page’s stopping time (2.3) is optimal in the sense that it minimizes
E.N subject to E.N>y>0.

This work is a generalization of Lorden’ s(1971) result where it was shown that (2.3) is optimal
asymptotically in the sense that y—o.

Page’ s stopping rule (2.3) is essentially based on a sequence of sequential probability ratio test(SPRT)
in which one rejects the null hypothesis that the process has density f(x 5 8,) 5 if a test in the sequence
accepts the null hypothesis, one immediately repeats the test.

The value of h is determined according to the trade off between the desired degree of protection
against false signals and the sensitivity requirements. Thus, in order to determine the constant h,
we need to calculate ARL. Unfortunately, however, the exact evaluation of ARL for the case where
the process has a continuous distribution is hopeless in general.

The two major methods used for approximating the ARL are the Wald and Wiener process approxima-
tion method However. both method underestimates the actual ARL and thus thev can not be used
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3. Approximations to the ARL

Let the sto_pping time N of the CUSUM chart based on Z be defined as (2.3). Define
T=min {n: S.€£0, h)} (3.1

where S,= Z; and
1

Q(0)=P(S:<0). (3.2)

Then T and Q(8) denote the sample number and operating characteristic(OC) function of the SPRT
with boundaries (0, h).
By the mathematical equivalence of CUSUM procedure and sequence of SPRT, the ARL of CUSUM

procedure can be obtained by using the average sample number(ASN) and OC function of SPRT.
That is, the ARL is expressed by Page (1954) as

ET
1-Q® 3.3

The ASN and OC function of the SPRT are not known explicitly in general, and thus neither the
ARL. There have been three major technique to approximate the ARL. The one is the use of numerical
methods such as Van Dobben de Bruyn(1968) and Goel and Wu(1971). Another is the use of Wald
approximations such as Siegmund(1979), Kahn(1978). The other is the Wiener process approximations
by Reynolds(1975) and Park(1987).

According to the results, numerical methods using exact equations are more accurate than approximate
method. Nevertheless, for analytical purposes there are advantages to having the formula of ARL.

A new approximation technique for calculation of ASN and OC function of the SPRT is presented
by using the condition of before-stopping time(CBST).

Let C. and C. be the excess of ST over boundaries h and 0, respectively. That is,

EN=

. C=S, | 3.4)

Crz ST—h l STSO

Sr>h
Also let the expectation of C, and C. be

u=E[C,], I=E[C.] (3.5)
The expectation of Sr can be expressed as

ELS:1=ELSr | Sr=h] - [1-Q(®)]+ELS: | S:20] - Q(6)
=lh+ul - [1-Q(0)]+1 - Q(6) (3.6)

and also, by Wald equation,
E[S:]=E[T] - E[Z] 3.7
where Z denotes LPRS. From (3.6) and (3.7), we have

Ch+ul - [1-Q(0)]+1- Q(0)
E[Z] (3.8)

if E[Z]+0. For the case E[Z]1=0, we use E[S%] instead of E[S:].
E[S*]1=E[S% | Sr=h] - [1—Q(®)1+E[S* | S:<0] - Q(0) (3.9)

E[T]=
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From (3.9) and (3.10), we have

TT T * - +E 527 Sr ol- 6
oy ES ISZh]E [thj QOI*ELST| 5,500- Q@

if E[Z]=0.
For approximation of u and [, we use the CBST technique. We give the condition of CUSUM of
Z. up to T-1 for approximating u and /. That is,

u=E[E {Sr_h | Sz, STZh}]

~E[Sr—h | St.=E(Sr. | Sr=h), Sr=h] (3.12)
and
[=E[LE {St| Sz Sr=0}]
~E[Sr | Sr,=E(Sr: | $:20), Sr=0] (3.13)
For approximation of E[Sr: | Sr=h]] and E[Sr.<0], we let
E[Sr: | Sr2h1~ELSr: | Sr=h+u] (3.14)
=x(u)
and
E[Sz | STZO]%E[ST—) | Sr=1] (3.15)
=x,(D)
Then we have the following two approximation equations by (3.12), (3.14), and (3.13), (3.15),
uxkE {ST_h | Sm:xr(u), Sr Zh} (3. 16)
I=E {Sr| Sri=x.(D, Sr=0}. (3.17)

The values of u and ! as well as x.(u) and x.(/) can be obtained by solving equation (3.16) and
(3.17) numerically.
For approximation of E[S% | St=h] and E[S:*| Sr<0], we let

ELS% | Sr=2h]xElS | Sti=x.(u), Sr=h] (3.18)
and
E[S% | Sr<0]1=E[S*r | Sri=x.), Sr<0] (3.19)
From Wald’s fundamental identity [see Wald(1947)]
Ele*T]=1 (3.20)

where d(0) is the unique nonzero solution d of Ee*=1. Also,
Ele“OT]=E[e" | Sr=h] - [1—Q(0)]
+E[&YT | Sr<0] - Q(8) (3.21)
Thus, we have from (3.20) and (3.21)

E d(0)ST ST h _1
Q@)= e | Sr=h] (3.22)

ELe*™ | Sr=h]—E["9T | §,<0]

if [Z]+#0, equivalently d(6)=0.
For anproximation of the OC function O(0) we 11ce the cama farho s siomd foe o 31w
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That is, we approximate

ELe" | S;2h]lxE[e" | Smi=x.(u), Sir=h] (3.23)
and
E[e' | Sr<hI~ELe | Sra=x.(D, Si<k] (3.24)
If E[Z]1=0, we use L’Hospital’s rule to (3.22) and obtain the OC function as
Q)= AL (3.25)
h+u—1

In order to evaluate the accuracy of the ARL obtained by CBST method in section 4 and 5, comparisons
are made with the existing results in normal and exponential cases. In each case of the distribution,
the analytical expression of the ARL is derived.

4. Normal Case

. .. . ) 1 (x—0)?
Suppose that {Xi, i=1, 2,-*} are i.i.d. with density f(x; 6)= ﬁ expl— = 5 ] and

consider the detection problem for =0 versus 6=0,(">0). Then the stopping time is defined as

N=min {n; S. — min Si=h}] (4.1)
0<i<n
where S,= ¥ Z and Z=8, (X— 9.
i=1

The exptessions of x.(u) and x(I) in (3.14) and (3.15) are obtained as follows.

xu) =E[Sw | 0<ST.1<h, Sr=h+u]
=E[h+u—Zr I 0<h+u—ZT<h]

_ olg(h+u)) —o(g(w))
=g, [ d)(g(h+u))_¢(g(u))+g(h+u)] ‘ (4.2)

x,,(l) =E[ST-1 | 0<ST-1<h’ ST=I:|
=E[S7‘_ZT | 0<ST_ZT<h, Srzl:l

_ o) —y(gU—r)
=0, [ @(g(l))—¢(g(l—h))+g(l)] (4.3)

where ¢ and ® denote the density and distribution function of standard normal distribution, respectively,

a 0
and g(a)=’§j + —2i —6.

Then u and [ in (3.16) and (3.17) are derived as
MZEEST“h | Sm=x,(u), STZh]
=E[Z:+x(u) —h | Zr+x(u) =h]
— olgth—x,(u))}
e D(—gh—x(u))}
I=E[S+ | Sr=x.(D), Sr<0]
=E[Z:+x() | Z:+x.() <0]

.t f e\ N1

—g(h~x(u))] (4.4)
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It was shown by Wald(1947, pp.168-169) that u and / are monotone increasing function of x.(u)
and x.(/), respectively, and the ranges of u and / are

olg(n)} olg(0}

0 [m—}—g(h)]<u<01 [q>{ =) —£(0)] (4.6)
and
o{g(0)} olg(—n)}
-6, L <I>{g(0)} —g(O)]<l<—91 [E(_g(_h)} “g(—h)] (4.7

Thus the solutions u and / of nonlinear equations (4.4) and (4.5) can be easily obtained by a simple
numerical method such as bisection method.
For the case E[Z]=0 (i.e. 8=8,2), the expression in (3.18) and (3.19) are obtained as follows.
E[Sil Sm=xr(u), STZh]
={x(u)}?+20x.(u) E[X—0|X—0=a]
+HE[(X—0)* | X—0=al

)1+ 20 S0 k1] 4.8)
h—x.(u) o
where a="g and similarly,
E[S%7 | Sri=x), Sr<0]
—o(b b
={x, (D) }*+20..(D) [¢8,() )]+e-‘*,[ —b- g(b)) +1] (4.9
—x(
where b=T.

The expressions in (3.23) and (3.24) are obtained as

ELe9 | Sra=x(u), Sr=h]
_ ®[d®) 6,—g{h—x(w)}]

®[—g{h—x(u)}]

d(e) o,
- EepL-d(®) o,fgl —n ) ~ 20 (4.10)
and
E[&9T | Sri=x), Sr<0]
ol —xW—d(®) 8)
- g —xD}]
- Expl—d(®) 6.gl —x()— 4(0) 9’}] (4.1D

20
where d(8)=1— o

The ASN is calculated by submitting (4.4), (4.5), Q(8), and E[Z]=6,(0—0,) to (3.8), where
Q(0) is calculated by submitting (4.10) and (4.11) to (3.22). Finally the ARL is calculated by (3.3).

For the case E[Z]=0, the ASN is calculated by submitting (4.8), (4.9), (3.25), and EZ*=0 to
(2 11)
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Park(1987) used bounds of conditional expectation (BCE) method to calculate the continuity correction
terms. The ARL values of Kahn, BCE are taken from Park(1987). The “EXACT” and “TRUE” values
are obtained by Van Dobben de Bruyn(1968) and Kemp(1958), respectively. Goel and Wu(1971)
used the systems of linear algebraic equation (SLAE) to approximate the ARL.

In Table 1, it is seen that CBST method is successful in estimating the ARL and is better than
Kahn’s and BCE methods for all cases. One serious defect of Kahn's method is that it overestimates
the ARL when | 6—0..| is near to 0 and does not provide an expression for | 0=, | =0.

In Table 2 and 3, CBST method is better than BCE for almost all the cases, but is not as good
as SLAE in general. This is because analytic methods by approximate equations can hardly beat numerical
methods.

According to the results in Table 1, 2 and 3, CBST method is shown to be better than the other
approximation methods.

5. Exponential Case

Suppose that {Xi, i=1, 2,*'} are i.i.d. with density f(x; A)=A e*, x>0 and consider the detection
problem of failure rate for A=1 versus A=A(C1).
The stopping time of the CUSUM procedure is defined as

N=min {n: S.—min Si=h} (5.1)

o<i<n

Table 1. Values of the ARL for h=3, 5, and 8(8,=1)

! 6-31 "EXACT" Kahn BCE CBST

. -1.0 2000 1824.80 1602.30 1977.39
: -0.6 195 208.47 179.36 188.36
‘ -0.2 32.8 36.43 32.39 31.86
J L 0.0 17.3 - 17.45 16.99
| h=3 | 0.2 10.7 18.41 10.90 10.54
; 0.6 5.62 6.05 5.83 5.55
{ 1.0 3.75 3.86 4.00 3.71
g 1.2 3.22 3.36 3.50 3.19
g 1.6 2.54 2.75 2.86 2.51
1 2.0 2.12 2.40 2.47 2.10
! - -0.6 2200 2382.40 2058.80 2151.30
L -0.2 104 113.53 103.09 101.58
0.0 38.1 - 38.24. 37.48
0.2 19.4 28.41 19.64 19.22
h=5 0.6 8.94 9.39 9.16 8.87
1.0 5.75 5.86 6.00 5.70
L2 4.89 5.02 5.17 4.85

1.6 3.79 4.00 | 4.1t 3.75 !

L 20 3.11 s 3.40 3.47 3.08 i

-0.6 82000 . 87620 75728 79192.55 |

-0.2 428 465.49 | 428.12 422.08 ;

0.0 84.5 - | 84.42 83.21 1

0.2 33.6 43.41 33.92 33.44 a

h=8 0.6 13.9 14.39 | 14.16 13.87 j

1.0 8.75 8.86 | 9.00 8.70 w

1.2 7.39 7.52 | 7.67 7.35 j

1.6 5.66 5.88 | 5.98 5.63 :
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| | | %
‘ : —
| -0.250 2133 2071 '1 2052 | 2026.77 i
| -0.125 381.67 400.28 l 400.66 395.41
‘ 0.000 125.24 124.28 l 125.21 123.71
| 0.125 57.67 59.30 59.61 59.00 |
| 0.250 36.36 36.71 ‘ 36.95 36.55 |
0.500 20.34 20.37 \ 20.59 20.29 -
0.750 14,04 14,06 : 14.29 14.00
1.000 10.75 10.75 { 11.01 10.70
Table 3. Values of the ARL for h=2(6,=1)
“f I I 1
| 8-t "EXACT" SLAE | BCE . CBST
. -1.6 3800 3768 2518 . 5351.18
| -1.2 ; 610 613.80 | 475.74 ! 695.19
-1.0 ‘; 259 258.67 | 213.59 : 271.75
-0.6 1 54 54.27 49.77 53.31
-0.2 ‘ 15.9 15.94 15.58 ‘ 15.57
0.0 ‘ 10.0 10.00 10.06 j 9.82
0.2 6.86 6.86 7.02 ‘ 6.76
0.6 3.96 3.96 4,18 ’ 3.94
1.0 2.74 2.74 3.01 2.74
| 1.2 2.38 2.67 2.40
: 1.6 1.89 1.89 2.23 1.94
i 2.0 1.58 1.58 1.97 1.67

where S.= = Z and Z=—(u—1)X+log A

i=1

Regular(1975) found the exact expression of the ARL as follows under the restriction log A:=h.

h
expl A ");__1]
E, N=1+

lo )\1 hy/]

(5.2)

When log A:=>h, however, the ARL in control becomes to small to be used in practice. Therefore

we restrict our attention only to log A<h.
The expressions of x(u) in (3.14) for log A,<h is obtained as follows.

() =E[Sr: | h+u—log W<Sr.<lh. Sr=h+u]

=h+tu—log ,+\—1) ELX| 0<x<10g )\,—uJ

_Ml log h.:—u
=% L S

. log hi—u_

L Y N

L2
T
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Then, by (3.16)

qu[ST—h I Smx,(u), STZh]
=E[Zr+x,w) —h | Zr+x,(u) = h]
_ )\1—1_’_ log M+x(u)—h

=== ot 7o) (5.4)
I—exp[—2 - % ):u_x}u h

Also, for 0<x<h,

E[S: | Sr.=x, Sr<0]
=E[x+Zr I x+ZTS0:|

log M+x
=x+log ,—(\,—1) -E[X ]S> £

=1 (5.5)
M—
A
which is independent of x. Thus
I=E[E{STI Stis S1$0}]
A
-2 (5.6)
It can be easily seen that u is a monotone increasing function of x.(u) and the range of u is
A—1 log i—h
g }w
(5.7
_M"1+ log )\,
A

log A
I—expl =\ =7

Thus the solution u of nonlinear equation (5.4) can be easily obtained by the bisection method
The expression in (3.23) is obtained as

Ele#™s | Sri=xu), Sr=h]
= AWl +ow) | BT dNGLDX | Xsw]
)\.1~1

_ _ log Ap+x,u)
Aoe d(A) Uog Ap+z(w)) [1__e fa+d(W (- D} o ]

{)\.+d()\.) (}\'1_1)} . {1_8_}‘. log M+xy(u)} (5-8)

-1

1 . 3d
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Also, for 0<x<h,

E[e | Sp=x, Sr<0]
Mt
= gwmns . pLpor DX | X 2 2

A (5.9)
“A+d) u—D

which is independent of x. Thus

E[&# | STSOJZE[E{edO‘)ST { Sris STSO}]

A
“A+d) (w—D

(5.10)

a—1 _
Submitting (5.4), (5.6), Q(6), and E[Z]=——lr +log A to (3.8), where Q(8) is cal-

culated by submitting (5.8) and (5.9) to (3.22), we obtain ASN and then the ARL by (3.3).

In the following Table 4, comparisons are made with some other results where the parameter values
of A are restricted only to 1 and A.. Note that d(A)=1 and —1 for A=1 and A, respectively. In
Table 4, Lorden and Eisenberger(1973) obtained “exact” values using the results of Kiefer and Wolfowitz
(1950), and the values of “exact” and Kahn are taken from Kahn(1978).

Table 4. Values of the ARL in Exponential Case

A EXACT Kahn CBST
Ai=1.4 1 422.1 420.8 (0.31) 426.12{0.95)
h=7.48925 1.4 47.9 44.26(7.60) 47.95(0.10)
Ai=1.6 1 676.0 675.2 (0.12) 685.04(1.34)
h=6.52 1.6 36.4 33.84(7.03) 36.49(0.25)
Ai=1.9 1 342.0 341.4 (0.18) 348.75(1.97)
h=4.09867 1.9 20.2 18.47(8.56) 20.25(0.25)

* npumbers in parentheses denote the percent difference

In Table 4, Kahn’s results tend to be better than CBST for A=1, but worse for A=A;. If the percent
difference of the estimated ARL to the exact one is considered, we can easily see that the maximum
always occurs at A=X; of Kahn.

According to the results in Table 4, it may be stated that CBST method is successful in estimating
the ARL of exponential case.

6. Conclusions and Remarks

It has been shown by Moustakides(1986) that the CUSUM procedure based on LPRS is optimal
in detecting a change in distribution. The problem of calculating the ARL is not completely solved
yet despite of its optimality.

The two main approaches presented in the literatures for the estimation of the ARL are numerical
and approximate methods, which have their own advantages and disadvantages. Numerical methods
give accurate results but require much computing time. Approximation methods can save time but
tand to he lece acctirate than niimerical anee. Neverthelesa. annroximation methods with analvtic expnres-
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That is, it gives the condition of Sr: and then replace it by E[Sr.] to approximate the ASN and OC
function of the SPRT.

Applying CBST technique to normal and exponential cases, it was shown that CBST is better than
or at least as good as the other approximation methods.
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