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Posterior Density of Parameters in Multiresponse Regression

Analysis with Missing Values in One Response
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ABSTRACT

In this article we develop the marginal posterior density of the model parameters in the multirespo-
nse regression models when missing values exist only in one response. The resulting density resolves
a couple of problems in the estimation approach proposed by Box, Draper, and Hunter(1970) and
provides a general interpretation for relationship between the estimates of the missing values and
the parameters.

1. Introduction

When we deal with the multivariate data, it is common to have some type of missing values and
the statistical techniques developed for the complete data set should be modified to handle that situation.
Box, Draper, and Hunter(1970) proposed an approach to estimate the model parameters when missing
values occur in some of responses in multiresponse regression analysis. Treating the missing observa-
tions as a part of parameters, they obtained the joint posterior density of the model parameters and
the missing values. Since it is not possible in most cases to derive the marginal posterior density
of the model parameters, they suggested to estimate both the model parameters and the missing values
by maximizing the joint posterior density of these two sets of parameters. One of shortcomings of
this approach is that the “parameter” vector can become impractically long if there are many missing
values. Also, since the missing observations are not usually of interest in themselves, we prefer to
use the marginal density of the model parameters as possible.

In this article we show that it is always possible to derive the marginal posterior density of the
model parameters when missing values exist only in one of responses. The resulting density also gives
a clear interpretation of the estimates of the missing values. In Box et al. (1970), they noticed in
a numerical example with a missing value that the estimate of the missing value can be interpreted
as a predicted value from a linear regression using the observed values. We show that this fact generally
holds under the data scheme we consider in this paper.

In the next section, we formulate the underlying model and briefly review previous work. We present
the main result in Section 3 by deriving the marginal posterior density and show in Section 4 how
this marginal posterior density can be used.
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2. Model Formulation

We consider data from experiments where there are R responses, y.»=(ya, Yus**» Yu)', measured
on the nth experimental run of total N runs and the models for the R responses depend on P parameters,
0=1(81, 62, """, 6)". Let the vector x.= (Xu, X2 **» Xux)T represent the values of K independent variables
in the nth experimental run. We assume that model functions, f.(x., 6), have been postulated as

Y= (%0, 0)F 20 (2.1)

where n=1,*, N3 r=1,", R, and z.=(zu, Zw, ", zx)" denotes the error term.

Example : AB Box and Draper(1965) considered a chemical reaction system in which there are
2 responses with models given as

fi=e
f=1—e™

See Box and Draper(1965) for the data and its description. In this example, there are N=10 cases,
P=1 parameter(x), R=2 responses (f;, f»), and K=1 independent variable, time (t). H

The model (2.1) can be written in matrix form as
Y=F(, 0)+2z 2.2

by collecting all the elements into matrices. The NXR observation matrix Y has ¥ as the (n, 7)th
elements, F(x, 6) is the NXR response matrix with the (#, r)th element £(x,, 6) and Z is the
NXR residual matrix with the (#, 7)th element z.. If the response matrix in (2.2) is given as a
linear function of parameters like

F(x, B)=XB (2.3)

where X is the NXK design matrix which is common for all responses and B is the KXR parameter
matrix, the model (2.2) belongs to the classical multivariate linear regression models(Anderson, 1984).
When the structure of (2.3) is destroyed, for example, by the different design matrices for the different
responses(Zellner, 1962, Tiao and Zellner, 1964) or by nonlinear relationships between the responses
and the parameters(Box and Draper, 1965), the model (2.2) belongs to the multiresponse regression
models, which are considered in this paper.

Assuming z, follows independently an identical multivariate normal distribution with the zero mean
vector and the common variance-covariance matrix £, Box and Draper(1965) derived the posterior
density of 0 as

p0 | Y | 272 | M7 2.4

for the complete data set, when noninformative priors for 8 and ¥ are used. Hence, the parameter
estimates 0 are chosen to minimize | Z"zZ |, which is called the determinant criterion. Bates and
Watts(1984, 1987) developed a generalized Gauss-Newton method to optimize | Z'Z | by explicitly
deriving the gradient and the Hessian of | Z"Z | with respect to 8. Further techniques for multiresponse
regression analysis can be found in, for example, Box et al. (1973), Stewart and Sorensen(1981),
Bates and Watts(1985), Kang and Bates(1990).

Box et al. (1970) modified the determinant criterion to handle the data with missing values. Treating
the missing observations as parameters (say, y.) and using a locally uniform prior for y., they showed
that the marginal posterior density of 8 and y., by integrating out X, is

MB v | o | 7Ty | N2 7o =\
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where each element of the residual matrix Z is now a function of both 6 and y.. The estimate 0
of 6 as well as the estimate y. of y. are obtained by minimizing | Z'Z | with respect to both 6 and
y= simultaneously.

3. Missing Values in One Response

As a spetial case of their approach, Box et al. (1970) obtained the marginal posterior density of
8=Ilog(k) explicitly by integrating out the missing observation in Example : AB, where y, is assumed
to be missing. In this section we show that this kind of integration can be done generally when there
are missing values in only one response. We actually derive the marginal posterior density of 8 and
show that the process does not depend on the model function forms.

When we estimate the missing values, we suggest to deal with the missing residuals z. instead
of missing observations y.. In regression analysis, we have an assumption that the disturbance is
independent of the model functions whereas the observed response is not. Hence, if the model specifica-
tion is correct, estimating the residuals will have less effect on the estimation of the model parameters
than estimating the observations. Also, the computational algorithm becomes much simpler if we deal
with the missing residuals(Kang, 1988).

By taking the transformation z+=y.—f(x.» 6) for missing residuals, or by following directly the
same procedure as in Box et al. (1970) with a locally uniform prior for z., we can show that the
marginal posterior density of 6 and z. is given by

PO, z. | Y)oc | Z72 | "2 3.1

Hence, we determine the values of 8 and z. to minimize | Z’Z|. When we have missing values
in one response, we can consider the following structure of the residual matrix

_ [Z] z; J
2= |z 2.
where Z; and Z; are matrices of sizes N, X (R—1) and N;X (R—1), respectively, z is an N;-dimensional
vector, and z. is an N.-dimensional vector containing the missing residuals. (We assume that there
are N; missing residuals.) This structure is obtained by moving the response with the missing values
to the last column of the data matrix, and by moving down any cases with a missing value to the

end of the data matrix. It is possible to do this because we have assumed that the observations from
the different experimental runs are independent. Then we have

i [ Z'2,:42'Z: 22+ 2"z, }
z/Z,+ 20'Z; 2"zt 20 2
Define Su=2,"2,+2."Z: and s,=2,"zi+Z,"z:+ 2"z, so the determinant of Z'Z can be written as
|z'z | = | Su | {ZITZI+ZmTZm“SJgTSI[ISJz} (3. 2)

Noting the second factor on the right of (3.2), which is a scalar, is a quadratic function of z., we
express it as a quadratic form for z.. If we set

2zt 2wz — s Sulse=c+ (zw— WAz — W),
then A, u, and ¢ are found as

A=Iy,—Z:S,'Z,"

u=A"Z:8,,"2,"z,

c=2z"21—2,"Z:8:1,'Z"z,— W”Au .
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To simplify the above expressions further, we note that the inverse matrix of A can be given
as

A=y, +2.(Z]27) 27" (3.3
using the formula from Rao(1973, p.33) and the determinant of A is
lal= |sul™ 122 |
= |z/2,+2'2, | ' | 2/Z | 3.4
using the fact that | I,—CD | = | L,—DC| for an mX#» matrix C and an #Xm matrix D(Tiao and

Zellner, 1964). The expression for u and ¢ is simplified by using (3.3) to
MZZZ(ZITZI)-I Z/ 'z
c= ZITZI —z,"Z, (Z1TZ1) 17"z,

Note that expressions for A, p, and ¢ do not involve the missing residuals. The joint posterior density
of 8 and z. then can be written as

9O, zu | Yec | 85| 2 {e+ (z— )" Alza— W} (3.5)

The second term on the right of (3.5) is in the form of an N;-variate Student’s t density and so
we can integrate out z, by comparing with a t density to get the marginal posterior density of 6.
It follows that

p(e | Y)OC I Su | N2 C—Nl/z NX (R_I) (3. 6)
To obtain a more simplified expression of ¢, we define
VASS EZ: ZI] : N:XR
Ze= [z'] . NX(R-1)
c Z .
Then $,=Z".Z: and, since
| zize | = | Z.'Z, | {21T21—Z1T21(ZzT21)_IZ1TZI}
= clz'z |
we have
_ | Zx"Zs |
= lzz | 3.7
From (3.4), 1Al =122 "|z"2 | . Plugging this and (3.7) into (3.6), we have
| ZdZe | Y072 | z77, | N2
PO 1 Ve | 2,72, | -7z (3.8

If we apply this equation to the first illustration of Example : AB of Box et al.(1970), we obtain the
same expression for the marginal posterior density of 0=log(x) as they did.

We also note from equation (3.5) that the conditional distribution of z, given O is a multivariate
t distribution with the location parameter u. Hence, an approximate estimate for the missing residuals
z. is given by p evaluated at 6. That is,

ZMZZz(ilTil) ! 21T£1 (3.9)

where Z,, Z,, and z are Z\, Z,, and z evaluated at 0, respectively. This explicit expression of the
estimate of z, also can be found by directly minimizing | Z'Z | with respect to z.. Equation (3.9)
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columns being the independent variables. The vector (ilTil)_li]TZAl is the estimated regression coeffi-
cient vector when we regress z on Z: with N, observations, and z. is the predicted values at the
values of Z.. Box et al. (1970) described a similar result when they analyzed Example © AB. Assuming
Y. » is missing, they noted that zi, ;= (Eu=s Znzw) /(%=1 22) * Zn. 1, Which can be obtained directly
from (3.9).

4. Applications

The marginal posterior density p(6 | Y) obtained in the previous section can be used in two ways.
First we can use it as an estimation criterion for the model parameters. That is, instead of using
the joint posterior density (3.1), we can estimate 6 by maximizing (3.8) directly with respect to
8. This reduces the number of parameters to be estimated. For this optimization, we can use the
generalized Gauss-Newton method(Bates and Watts, 1984, 1987). If we decide to estimate 6 by minimi-
zing —log p(@ | Y), then the objective function is now a linear combination of three parts, each of
which is the logarithm of a determinant. As shown in Bates and Watts(1985), we can easily develop
the gradient and an approximate Hessian of the logarithm of determinants involved, which, in turn,
provides the gradient and an approximate Hessian of —log p(6 | ¥) with respect to 6.

Secondly we can use this exact marginal posterior density of 0 to check the validity of any approximation
method. For example, the quadratic approximation to the posterior density (2.4) for the complete
data set (Bates and Watts, 1985) is a possible approximation method which can also be applied to_
the joint posterior density (3.1). This approximation seems to work nicely because it makes the analysis
easy by using the properties of the multivariate t distribution. The quality of this quadratic approximation
can be measured by comparing with the exact marginal posterior density (3.8). We demonstrate this
application using Example : AB. Since there is only one parameter in this example, it is possible
to plot its posterior density. In Fig. 1, the solid line is the exact marginal posterior density of 6
when yu. » is assumed to be missing, and the dotted line is the approximate marginal density obtained
from the quadratic approximation. (Each density is normalized numerically.) The closeness of the
two densities shows good performance of the quadratic approximation method in this example.
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