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On Large Deviation of the Sample Medians
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ABSTRACT

Consider the following problem in the large deviation theory. For constants ai, . a, the tail
probability P(M,>>a, ", M,>>a,) of the sample medians (M,, ", M,) is supposed to converge to
zero as sample size increases. This paper shows that this probability converges to zero exponentially
fast and estimates the convergence rates of the above tail probability of the sample medians. Also
compare with the rates about the sample means.

1. Introduction

Suppose that {Xn} ={(Xu, ", Xu) } is a sequence of p-variate iid random vectors. Let a={a;, ",
a,)’ be fixed in R®. For each n=1, 2, let

Z X, Z X
P,=P(-—"L——>q, -, S0
=P(Xz>a;, ety )—(;>ap)- (1)

It is assumed that the given g satisfies the condition that P,.>0 for each #, and P,—0 as n—~>. And
assume that the random vector has the moment generating function ¢(t) of X., i.e.,

o) =Elexp(’ X.) 1.
Define
v =exp (-@’8) o). ®)

Let T denote the set of all values ¢ for which ¢(#)<{co. We suppose that the T is non-degenerate,
and that there exists positive t=(t;,***, t,)", T_>0 for any j, in the interior of T such that

\u(g):in,( {w®}= plsay). 3
Then we have
n' log P,=log p+o(l). (4)

In univariate case(p=1), estimates p in (4) were obtained by Cramér(1938), Blackwell and Hodges
(1959), Chernoff(1952), Bahadur and Rao(1960) and Bahadur(1960). The estimating method given
by Bahadur and Rao(1960) and Bahadur(1960) is essentially a variant or extention of Cramér’ s work.
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Blackwell and Hodges(1959) considered the case that X is a lattice variable. And Chernoff(1952) consi-
dered the case that X is a discrete random variable. Bahadur and Rao(1960) proved in the general
case, that is, discrete and continuous as well, and Bahadur(1960) refined the Bahadur and Rao(1960)" s
work. Sievers(1969, 1975) generalized the previous large deviations and considered large deviation
of the sample median. Steinebach(1978) extended to the multi-dimensional case. And Bahadur and
Zabell(1979) extended large deviations of the sample mean to general vector space. Hong and David
(1988) obtained, among other matters, an alternative of the estimate of large deviation of the sample
median. Moreover, Hong(1989) extended the case of weighted averages to the regression model,
and those which are not necessarily independent and identically distributed.

Now this paper extends Sievers(1969) and Hong and David(1988)’s works to p sample medians,
and obtains the convergence rates of large deviations P(M,>>as, -+, M,>a,) of the sample medians
via the theory of Bahadur(1960, 1971) and Bahadur and Rao(1960). In Section 3, the rates of the
sample medians are compared with those of the sample means over Normal distributions. The standard
bivariate Normal distribution is used to calculate the convergence rates of the deviations.

2. Deviation

It is assumed without any loss of the generality through out the paper that EX,) =0, and ¢>0,
wwhere 0 is the null vector. This satisfies the condition that P.>0.

Let M be the sample median and a be a fixed constant. Large deviation P(M>>a) of the sample
median was considered by Sievers(1969), and Hong and David (1988) gave a version of it on the
way to consider the asymptotic variance of the rounded sample median.

We here consider the case P(M:>a, -, M,>a,), where M= (M, -, M,)’ is a vector of-the sample
medians from {X,=(Xu, ", Xu)'}. Without loss of generality the sample size # is an odd number,
n=2v+1.

Let Yo=(Y.,*» Ya)' be a sequence of the indicator vector, in which Y, denotes the indicator vector
of the event X,>a;, ‘then with the argument similar to that in Sievers(1969) and Hong and David(1988),
we express as the followings :

PM >ai, " My>>a,) (5)
:P (Ezv+1i=1 i1>0+17"" ZZﬁ-li=1 Yxp>0+1)
=p(¥>1/2, -, ,>1/2), 6

where the second equality is due to the fact that ¥>*';-; Y, must be an integer. Note that it satisfies
the underlying condition that the above probability is positive and converges to zero as n increases.
The previous works about large deviations reviewed in Section 1 were carried into execution for
a sequence of random variables which have moment generating functions. The large deviation (5)
of the sample medians, however, does not require the existence condition of moment generating func-
tion, because any sample medians can be expressed in terms of Bernoulli random variables.
Then the moment generating function of Y. can be obtained

o) =P+ :é P oexp(t) +
+P exp(Zi-s ),

Pzij exp(t.—+t,~)+ see

=
=1 =10

where

p:P(Xm'<ai for all 1)9
PlizP(Xm'_<__ai’ Xni<ai for all j(];ﬁi)),
P=PX.>a X, Xu<law for all B(kzi, k#))),
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And y(#) defined in (2) turns out to equal
vO=exp(-1.72 I'D) ¢,

where 1 is the pX1 unit vector. Therefore we state

Assertion
lim w' log P(M:>ai, -+, M,>a,) =log p,

n—rw

where
—mf exp( 1/2 1 P+ 2 P oexp(t)+ >: z P exp(tit+t)

- P exp( ,21 t). B

The estimate p in the bivariate case(p=2) will be examined. We have

\V(tz, tz)ZEXP(-(t1+tz)/2) (P0+Plz eJCp(tI)
+P, exp(tz)-i“P’ exp(tri‘tz)).

Then solve

d d
a y(t, =0 and d_tz\ll(tz, t) =0,

so that one gets
1 PP, 1 PPy
zlepp  ad  w=glgp

ThUSs
\"(tl’ tz) :2{ [FP]I/2+ I:PII PIZJI/Z} .

Therefore, we obtain in the form (4)
im n' log P (M1Za1y M2_>__az)

r—>wm

=log 2{(P°P)"*+(P"; P'.)'"*}
=log 2{ [P(X,<a1, Xz<az) P(Xzzan XzZaz) ]1/2
+ U’(X:<a1, XzZaz) P(X:Zdn Xz<az)]1/2} . (7)

For a general case(p>3), the estimate p defined in Assertion does exist, but it is not easy to formulate
it. Futher works will be remained to readers.

3. Comparison

t X, be the p-variate Normal random vector with mean vector 0 and variance-covariance mat-
Define @( - ) is the standard Normal distribution function and ®( -, -) is the

rix V =r1 r-.
1 bivariate standard Normal distribution function described above. Since

rIJ

P =®(a,, a2, P,=®(a,) —P(a;, av),
Plqu)(az)—d)((ln az), and Pzzl_q)(aJ)—‘D(az)+¢(dl, az)-



lim n' log P (MlZa“ Mzzaz)

Eadcd
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=log 2{(®(a), a2) [1—®(a,) —P(a:) +P(ai. a) D'
+([d>(a;)—d>(a1, az)] [Cb(az)—fb(an dz)])l/z}.

Now consider large deviation of the sample means for the standard bivariate Normal distribution.
Then it is well known that

lim n'log PX >a:, X;>a)= —1/2aV'a

n->w

a, a:

1+r °

(®

9

Table 1 below shows that the deviation rates of the sample means and the sample medians over
the variation of @&,=a:=a and the correlation r. In such case, formulation (8) and (9) will be

log 2{[®(a, @) U1—2®(a)+®(a, a))]*+(D(a) —D(a, aD},
and -a*(1+7), respectively. The values of ®@( - ) and ®( -, -) were extracted from Pearson(1931).

Table 1. Convergence Rates

A . negative correlation

a\\ r ~0.8 -0.6 —0.4 —0.2 -0.1
X —1.250 —0.625 —0.417 —0.313 —0.278
0.5 M —0.351 ~0.261 —0.213 —0.181 —0.169
X —5.000 —2.500 —1.667 —1.250 —1.111
1.0 M —1.110 —0.961 —0.822 —0.713 —0.668
X —20. 000 —10. 000 —6.667 —5.000 —4.444
2.0 M —3.090 —3.066 —2.931 —2.691 —2.555
X —45.000 —22.500 —15. 000 —11.250 —10. 000
3.0 M -5.915 —5.914 —5.883 —5.677 —5.475
B : positive correlation
T Y
a 0.1 0.2 0.4 0.6 0.8
X —0.227 —0.208 —0.179 —0.156 —0.139
0.5 M —0.149 —0.141 —0.126 —0.113 —0.100
X —0.909 —0.833 —0.714 —0.625 —0.556
1.0 M —0.591 —0. 558 —0.499 —0.446 —0.394
X —3.636 —3.333 —2.857 —2.500 —2.222
2.0 M —2.288 —2.161 ~1.928 —1.716 —1.512
X —8.182 —7.500 —6.429 —5.625 —5.000
3.0 M —4.945 —4.663 —4.128 —3.649 —3.207

From the Table 1, it is seen that the deviation rates of the sample means are smaller than those
of the sample medians. This reflects the fact that the tail probability of the sample medians is greater
than that of the sample means in bivariate Normal distribution.

Tla vntine f Aaviatinm ratec af the camnle meane veraus the sample medians are obtained in Table
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converges to zero faster than that of the sample medians.

Table 2. Convergence Ratio

A ! negative correlation

., T ~0.8 ~0.6 ~0.4 ~0.2 -0.1
0.5 | RATIO 3.561 2.391 1.957 1.723 1.642
1.0 | RATIO 4.505 2.602 2.028 1.753 1. 664
1.5 | RATIO 5.598 2.917 2.139 1.800 1. 698
2.0 | RATIO 6.473 3.261 2.274 1. 858 1.739
2.5 | RATIO 7.121 | 3.564 2.417 1.920 1.784
3.0 | RATIO 7.608 3.805 2.550 1.982 1.827
3.5 | RATIO 7.983 3.991 2. 665 2.039 1. 866
4.0 | RATIO 8.276 4.138 2.759 2.092 1.901

B ! positive correlation

., T ’ 0.1 0.2 0.4 0.6 0.8
0.5 | RATIO 1.514 1.482 1.420 1. 389 1.393
1.0 | RATIO 1.538 1.494 1.433 1. 402 1. 409
1.5 | RATIO 1,561 1.515 1.453 1.425 1.435
2.0 | RATIO 1.590 1.542 1. 482 1.457 1. 470
2.5 | RATIO 1.622 1.574 1.517 1.497 1.513
3.0_| RATIO 1. 654 1. 608 1.557 1.542 1.559
3.5 | RATIO 1.686 1.642 1.598 1.587 1.605
4.0 | RATIO 1.714 1.674 1.637 1.628 1.644

And Table 2 tells us that, when the correlation » is fixed, the ratio increases as @ increases. But
for a given constant a, the ratio decreases as the correlation r moves from negative to positive values.
However the ratio stops decreasing after »=0.6 and starts to increase slowly. It is an interesting
point we might say that the function of the ratio is convex with respect to the correlation. The ratio
function is plotted in Fig. 1 below.
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In the case r=0, that is, X and X.. are independent, the convergence rates of the sampie means

and medians are summations of the convergence rates of the sample mean and median which are
well known large deviation results. And the ratio in above case (¢:=a.=0 and r=0) converges to
n/2=1,571 as a decreases.
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