Note on Truncated Estimators in Recovery of Interblock Information

Tatsuya Kubokawa* and Woo-Chul Kim**

ABSTRACT

In the problem of the recovery of interblock information in balanced incomplete block designs(BIBD), it is well known that a truncated estimator dominates the untruncated estimator under mean squared error loss. This paper shows that the domination result holds universally for every nondecreasing loss function.

1. Introduction

Consider a balanced incomplete block design with both blocks and errors random. Let t= number of treatments, b=number of blocks, r=number of replications, k=number of cells per block, and $\lambda=$ number of times any pair of treatments appears in the same block. Throught the paper, we use the following notations:

$$\alpha = k/(\lambda t), \ \beta = k/(r-\lambda), \ \gamma = 1/(bk),$$

$$p = t-1, \ m = bk-b-t+1, \ n = b-t,$$

$$\theta = \alpha \sigma_1^2/(\alpha \sigma_1^2 + \beta \alpha_2^2), \ \theta_0 = \alpha/(\alpha + \beta).$$

These constants satisfy $\alpha > 0$, $\beta > 0$, $\gamma > 0$, $p \ge 2$, $m \ge 1$, $n \ge 1$. Then Graybill and Weeks(1959) give the following canonical form: The statistics $X_1, \dots, X_p, Y_0, Y_1, \dots, Y_p, S_1, S_2$ are mutually

Department of Mathematical Engineering and Information Physics, Tokyo University, Bunkyo-ku, Tokyo 113, Japan

^{*} Department of Computer Science and Statistics, Seoul National University, Kwanak-ku, Seoul 151

-742, Korea,

independent and minimal sufficient for unknown parameters of the original model, where

$$X_1 \sim N(\mu_i, \alpha \sigma_i^2), Y_1 \sim N(\mu_i, \beta \sigma_2^2) \text{ for } i=1,\dots,p,$$

 $Y_0 \sim N(\mu_0, \gamma \sigma_2^2),$
 $S_1/(\alpha \sigma_i^2) \sim \chi_m^2, S_2/(\beta \sigma_2^2) \sim \chi_n^2.$

Here μ_0 is the unknown total mean, μ_1, \dots, μ_p are the unknown treatment contrasts, σ_1^2 and σ_2^2 are unknown variances such that $\sigma_1^2 < \sigma_2^2$, i.e.

$$\theta < \theta_0$$
.

Also the first common mean μ_1 is, without loss of generality, considered any treatment contrast, and X_1 and Y_1 are regarded as the *intrablock* and the *interblock* estimators of μ_1 , respectively. Then based on the statistics $(X_1, \dots, X_p, Y_0, Y_1, \dots, Y_p, S_1, S_2)$, we want to estimate the treatment constrast μ_1 .

In the analysis of BIBD's with blocks and errors random, Yates(1940) first exhibited that there arise two independent unbiased estimators X_1 and Y_1 of treatment contrast μ_1 and derived a method for combining these two estimators so as to estimate μ_1 with greater precision than the customary intrablock estimator X_1 . This analysis is called *the recovery of interblock information*. Later, other combined estimators being better than X_1 have been given by many authors[For the references, see Kubokawa(1988)]. Among these estimators, the inadmissibility of untruncated estimators has been shown by Seshadri(1966), Shah(1971), Nair(1982). More generally, Bhattacharya(1983) considered the estimators

$$\delta = X_1 + \Psi \cdot (Y_1 - X_1), \tag{1.1}$$

$$\delta_{TR} = X_1 + \min(\theta_0, \Psi) \cdot (Y_1 - X_1), \tag{1.2}$$

where

$$\Psi = \Psi(S_1, S_2, (X_1 - Y_1)^2, Y_0, X_1, Y_1, i = 1, \dots, p).$$
(1.3)

and proved that the truncated estimator δ_{TR} dominates the untruncated one δ . All the above results were obtained for quadratic loss function. So of interest is to investigate whether the domination holds relative to general loss functions.

Lee(1987) recently demonstrated that δ is dominated by $X_1 + \min[1, \max\{0, \Psi\}] \cdot (Y_1 - X_1)$ with respect to arbitrary convex loss functions. The purpose of the paper is to prove the following theorem. Let $L(\cdot)$ be any nondecreasing function on $[0, \infty)$.

Theorem 1. Assume that $\Psi > \theta_0$ with positive probability for Ψ defined by (1.3). Then δ_{TR} in (1.2) dominates δ in (1.1) relative to any nondecreasing loss $L(|\delta - \mu_1|)$, that is,

$$E_{\omega}[L(\mid \delta_{TR} - \mu_1 \mid)] \le E_{\omega}[L(\mid \delta - \mu_1 \mid)] \text{ for any } \omega, \tag{1.4}$$

where $\omega = (\mu_0, \mu_1, \dots, \mu_p, \sigma_1^2, \theta)$, unknown parameters.

The next lemmas are useful for the proof.

Lemma 1. Let $U=Y_1-X_1$ and $V=Y_1-\mu_1+a(X_1-\mu_1)$ where $a=\beta\sigma_2^2/\alpha\sigma_1^2$. Then U and V are independently distributed.

Lemma 2. Let Φ denote the distribution function of N(0, 1), and let $\bar{\Phi}=1-\Phi$. Then, for any fixed t'>0,

$$G(c) = \bar{\Phi}(t'-c) + \bar{\Phi}(t'+c)$$

is nondecreasing in c>0.

In the sequel we will use the notations in Lemma 1 and Lemma 2.

2. Proof of Theorem 1

Under the assumed model, it suffices to show that $|\delta - \mu_1|$ is stochastically larger than $|\delta_{TR} - \mu_1|$. By the conditional argument, we may regard every random variable except X_1 and Y_1 as a constant. It is also easy to see that we may assume $\mu_1 = 0$.

For any fixed t>0,

$$\begin{aligned} & P\{\mid \boldsymbol{\delta}\mid > t\} \\ &= 2P\{X_1 + \boldsymbol{\Psi}(Y_1 - X_1) > t\} \\ &= 2P\{(1 + a)^{-1}(V - U) + \boldsymbol{\Psi}U \ge t\} \\ &= 2E[\bar{\boldsymbol{\Phi}}\{t' + b(\boldsymbol{\theta} - \boldsymbol{\Psi})U\}] \end{aligned} \tag{2.1}$$

where $t'=\frac{(1+a)t}{\sqrt{\alpha\sigma_1^2+\beta\sigma_2^2}\sqrt{a}}$ and $b=\frac{(1+a)}{\sqrt{\alpha\sigma_1^2+\beta\sigma_2^2}\sqrt{a}}$. Since U and -U are identically distributed and Ψ depends on U only through $\mid U\mid$, it follows from (2.1) that

$$P\{ \mid \delta \mid >t \}$$

$$=E[\bar{\Phi}\{t'+b(\theta-\Psi)U\}+\bar{\Phi}\{t'-b(\theta-\Psi)U\}]$$

$$=E[\bar{\Phi}\{t'+b(\theta-\Psi)\mid U\mid \}+\bar{\Phi}\{t'-b(\theta-\Psi)\mid U\mid \}].$$
(2.2)

The last identity holds because $\bar{\Phi}\{t'+b(\theta-\Psi)U\}+\bar{\Phi}\{t'-b(\theta-\Psi)U\}$ is an even function of U.

Let

$$G(b(\Psi - \theta) \mid U \mid) = \overline{\Phi}\{t' - b(\Psi - \theta) \mid U \mid\} + \overline{\Phi}\{t' + b(\Psi - \theta) \mid U \mid\}.$$

Then, from (2.2), we have

$$P\{ \mid \delta \mid > t \}$$

$$= \mathbb{E}[I(\Psi \leq \theta_0) G(b(\Psi - \theta) \mid U \mid)]$$

$$+ \mathbb{E}[I(\Psi > \theta_0) G(b(\Psi - \theta) \mid U \mid)].$$
(2.3)

Since $\theta_0 > \theta$, it follows from Lemma 2 that

$$E[I(\Psi > \theta_0) G(b(\Psi - \theta) \mid U \mid)]$$

$$\geq E[I(\Psi > \theta_0) G(b(\theta_0 - \theta) \mid U \mid)].$$

Therefore we have, with $\Psi \wedge \theta_0 = \min{\{\Psi, \theta_0\}}$,

$$P\{ \mid \delta \mid > t \}$$

$$\geq E[I(\Psi \leq \theta_0) G(b(\Psi - \theta) \mid U \mid)]$$

$$+ E[I(\Psi > \theta_0) G(b(\theta_0 - \theta) \mid U \mid)]$$

$$= E[G(b(\Psi \land \theta_0 - \theta) \mid U \mid)]$$

$$= P\{ \mid \delta_{TR} \mid > t \}$$

which completes the proof of Theorem 1.

It should be remarked that results on left truncated estimator can be obtained in a similar way to Theorem 1.

References

- Bhattacharya, C.G.(1983). Use of Modified Estimator in Recovery of Interblock Information. Sankhya, B, Vol. 45, 466-470.
- Graybill, F.A. and D.L. Weeks. (1959). Combining Inter-block and Intra-block Information in Balanced Incomplete Blocks. The Annals of Mathematical Statistics, Vol. 30, 799-805.
- Kubokawa, T.(1988). The Recovery of Interblock Information in Balanced Incomplete Block Designs. Sankhya, B, Vol. 50, 78-89.

- Lee, Y.(1987). A Modification of the Combined Estimator of Inter- and Intra-block Estimators
 Under an Arbitrary Convex Loss Function. *Journal of the Korean Statistical Society*, Vol. 16, 21
 -25.
- 5. Nair, K.A.(1982). An Estimator of the Common Mean of Two Normal Populations. *Journal of Statistical Planning and Inference*, Vol. 6, 119-122.
- Seshadri, V.(1966). Comparison of Combined Estimators in Balanced Incomplete Blocks. The Annals of Mathematical Statistics, Vol. 37, 1832-1835.
- 7. Shah, K.R.(1971). Use of Truncated Estimator of Variance Ratio in Recovery of Inter-block Information. *The Annals of Mathematical Statistics*, Vol. 42, 816-819.
- 8. Yates, F.(1940). The Recovery of Inter-block Information in Balanced Incomplete Block Designs. *Annals of Eugenics*, Vol. 10, 317-325.