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The Algorithm of Sweep-the-Negatives and its
Applications to Order Restricted Inference

Byong-Dok Kim*, Jae-Rong Choi** and Akio Kudo***

ABSTRACT

Consider the extreme problem: min{u —y) (x —y) subject to Ay >0, where A is an
nxp matrix, which often occurs in solving the maximum likelihood estimator with
ordered restrictions in parameter space. In case the matrix AA’ has all non
-positive off-diagonal elements, some propositions in this paper guarantee that the
above extreme solutions are achieved at most at n sweep out steps in Gaussian

eliminations. Some typical examples of Sweep-the-Negatives method are given.

1. Introduction

Statistical inference under the ordered restrictions frequently occurs in data analysis,
especially in biological treatments, psychological works, and social sciences. The order
restricted inference is said to have been started by Bartholomew(1959 a, b). These are the
first papers in this area which widely drew attentions of statistical community. Kudo(1963)
considered the problem of statistical inference under the condition that all the components
of the mean vector are positive, give an n-variate normal distribution with the known
variance matrix, by making use of the properties of convex cone. The above works and their

applications are described in Barlow et al.(1972).
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Later Kud6 and Choi(1975) have generalized the previous result to the case when the
variance matrix is singular. In the process of developing in statistical inference under the
ordered restrictions, it is remarkable that the derivations of test functions and optimum
estimators are very difficult. Barlow et al.(1972) introduced the Pool-Adjacent-Violators
Algorithm(PAVA) which solves the maximum likelihood estimator (M.L.E.) of parameters
in case of simple or simple tree order. Recently Dykstra et al.(1986) and Robertson et al.
(1988) have proposed some methods for the estimations of parameters under the ordered
restrictions.

The PAVA finds its justification in its graphical interpretation. It uses the greatest
convex minorant(GCM) of the cumulative sum diagram (CSD). On the other hand, the Sweep
-the-Negatives algorithm (Choi, 1976a) bases on the characterization of the location of the
projection of a point to a convex polyhedral cone given by Kudo(1963) and further by Kudo
and Choi (1975).

The purpose of this paper is to illustrate explicitly how the algorithm developed in
Choi(1976a, b) works and to demonstrate it in more details. We are engaged in geometric or
linear algebraic approach to formulate the statistical inference with order restrictions. Our
main proposition with respect to convex polyhedral cone prepares the method for solving the
estimation problems by applying Gaussian elimination (Kennedy and Gentle, 1980). Fur-
thermore we obtain a simple algorithm solving the estimation problem in case the matrix
AA’ has all non-positive off-diagonal elements. Our algorithm can be widely applied to

simple or simple tree order, upper starshaped problem (Shaked, 1979), and duality.

2. Geometrical Properties of the Polyhedral Convex Cone

Let ai, az,'*,an be a set of p-vectors satisfying the condition that any subset of size less
than or equal to p from n forms an independent set of vectors. Let A=(a,, a,,-*+,an) be an

nXxp matrix and let N={1, 2,---,n} be an index set. Let
Cnv={z | z€R?", (a,, z)=0, ieN}

be a closed convex polyhedral cone determined by a,, a,,+++,a,. Cy is denoted by C for
simplicity. Given a point y&RP, the distance d(y, C) between the point y and the set C is
defined by d(y, C)=inf | y—z || =inf / (y—z, y—z), where infimum is taken for all the

values of z in C.
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If ye&C, there is a point y,&C such that d(y, C)=dly, yo). If yC, it is evident that d(y, C) ‘
=0 and y,=y. The point y, is called the projection of y on the convex cone C. The closedness
of the cone confirms the existence of the projection y, and the convexity also confirms the
uniqueness of y,. Let M denote a subset of N, and let m be the size of the set M. Now let
Fu be a subset of C, defined by

{z | z€R?, (a;, 2)=0, iEM; (a,, 2)>0, ieN—M}, m<min(p, n)

Fu = 2.1

{z | z€R®, (a,, 2)=0, iEN}, m =min(p, n)
which may be an empty set in some cases.

Remark 2.1 In case m=n<p, Fy is a (p—n)-dimensional hyperplane and in case

p<m<n, Fy={0}.

Hereafter we take M={1, 2,---,m}, m<p, without loss of generality. Furthermore let us

define the following:

S, the linear subspace spanned by {a | iEM}.
w=1{z | zZER®, (a,, 2)=0, iEM}: the linear space orthogonal to Su.
a,, a®,, -+,a™: vectors contained in Sy, such that (a%, a;)=dy for alli, jiEM,

where d; is Kronecker’s delta.

w=1{z | zERP, (a%, 2)<0, icM}.
yu: the projection of y to By.
Ch={z* | z*€R", (z*, 2)<0, z&Cy}: the dual cone of Cy.

In what follows, we describe some propositions with respect to the convex cone, using

the above definitions and notations. The proofs are omitted.
Proposition 2.1 In case p<n, Dy N Su=C%:. Particularly Dy=C% in case m=p=n.
Proposition 2.2
CN=FNU(¢CﬁcN Fu), 2.2)
where the summation runs over all the subsets M of N with m <min(n, p).

Remark 2.2 The closed convex cone is partitioned into disjoint sum of the convex cones,
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and the problem is, for given y, to dertermine which one of these cones the projection of

y belongs to.

Proposition 2.3

a’l -1 / a’1 a(]lw)r
i (@n,am) [ = : ) 2.3)

an \ @ am’

We will give a necessary and sufficient condition that the projection of y lies in a
disjoint face of the cone Fy. Corresponding to M, let us partition the matrix A into the

following form,

A:(alv dz,"**,am, am+1"",an),=(A’1, A’Z)’. (2.4)

Proposition 2.4 The necessary and sufficient condition that for a given point y, the

projection y, of y on the convex polyhedral cone C, is contained in Fy is given by

di=(A; A’ Ayy<0, (2.5)

and
d;=A,yu>0, (2.6)

where
;’M:[I_AII(AX At ALy

And in this case, yo=§'M.

Remark 2.3 In case m=0, that is, M= ¢, the condition (2.5) is vacuous and the inequal-
ity (2.6) is reduced to (a;, y)>0, ieN, and in case M=N, the condition (2.6} is vacuous and

only (2.5) remains.

Remark 2.4 In case m=p, y,=0, because any subset of {a,,":*,a,} with size p spans the

entire space R".
Remark 2.5 According to (2.3), (2.5) equals to (a'};, y)<0 for all ieM.

Proof. Incasen=p and {a,, a,,"*,an} are independent, the proof of this proposition was

given for 0<m<n by Kudo(1963); in case n>p, 0<m<n, that was given by Kudo and
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Choi(1975); in case of m=n=p that was given in Choi(1975); and also we shall easily prove
that in case m<n<p as in Kudo and Choi(1975).

3. The M.L.E. under the Ordered Restrictions

Proposition 2.4 enables us to provide an algorithm of a special convex programming
necessary for calculating estimate under the ordered restrictions. Our algorithm consists
of checking out the condition (2.5) and (2.6) in Proposition 2.4 on the process of Gaussian
elimination with a pivot matrix A;A’,, where A, =(a,, a,,--,an) for all subsets MCN.

Now we state a method to get the M.L.E. of the mean value under the ordered
restrictions. Let a random vector Y=(Y,, Y,,--,Y,) have a multivariate normal distri-

bution with the mean vector x4 and the covariance matrix I;:
Y ~ Np(u, Ip). 3.1

Considering the transformation X =AY, we have X~N.(6, D), where §=Ax and D=
AA’. The M.L.E. under the condition that 6 =6,=---= 6,=0 (m<p) is clearly nothing but
the projection of y on By.

For a given y, finding the M.L.E. 2 of x under the condition Ag >0 is equivalent to

finding the solution of
min(x —y) (¢—y). (3.2)
Au=0
If D is non-singular (n=p in this case), then (3.2) is equivalent to

min(f—x) D™(6—-x) (3.3)

020

for a given x and a positive definite matrix D. The solution x of the minimizing problem
(3.2), regardless of D being non-singular or singular, is guaranteed to exist and it satisfies
the conditions (2.5) and (2.6) for a subset M, because the existence and the uniqueness
are guaranteed by the closedness and convexity of the cone.

We consider the partitions of x and D corresponding to (2.4):

x= (X“’> = (A‘y> D= D“ D"> AL AL, (34
X(z) Ay /> D,, D, < )( 1, A2 (3.4)
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where A, =(a;, az,,am) and A, =(am+1,"*,an) .

Now consider the following matrix

D, D. X

D., D,, X2 . (3.5)
Ay A,y

Sweeping out (3.5) taking D,, as the pivot means post multiplying the following matrix
to the matrix (3.5):

D, 0 0
-D;Dy I 0
—A"'DYy 01
And after simple calculation, we have
Im D uiDe D 4% I. * d;
0 Dz, —D;, D71 Dy; Xo—DaDhuxw |=( 0 % d, . (3.6)
0 A,—A\D1/Dy, y—A' D ixq \() * d,

Proposition 2.4 indicates that the projection y, is located on Fy, if and only if d, <0 and

d,>0 in (3.6). At the same time, it is easily shown that d; equals to 1« the solution of

< X D D X > < )
(2) 21 1148(1) d2

equals to 8, the solution of (3.3). The index subset M satisfying the conditions d, <0 and
d, >0 is unique, because the projection is unique and the cone is partitioned disjointly by
Proposition 2.2.

Consequently, in order to find the M.L.E. of mean vectors, we have to compute Gaussian
elimination of (3.5) for all the combinations of the index subset M and examine the signs
of the upper parts of the last column of (3.6). For some large number n, however, it is

meaningless to compute Gaussian elimination. In the next section we describe a special

case.
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4. Sweep-the-Negatives

In the algorithm mentioned in the previous section, we have to apply a systematic trial
and error method in order to find out the subset M of N, where iEM implies ,=0. Hence
we might have as many as 2°-1 of Gaussian elimination before arriving at the solution in
a general case.

Choi(1976a) gave us a simple algorithm under the condition that all the off-diagonal
elements of D are non-positive. We call this method Sweep-the-Negatives algorithm.

In order to demonstrate the algorithm of Sweep-the-Negatives, we introduce two
lemmas with respect to some positive semidefinite matrix, and making use of these
lemmas, we prove Proposition 4.3 which gives us an efficient Gaussian elimination method

for our problem.

Lemma 4.1 Let D=(d;;) be an nxn positive definite matrix with d,;<0 (i+#j) and let D!

be the inverse of D. Then the elements of D! are all non-negative.

Proof. We prove this by the inductive form. When n=1, the lemma is obvious. Suppose
that the lemma holds when the order of D is n-1. We consider the case when the order is
n (n>2). Let D be partitioned as

D d
D= ( ' ’ > _ (4.1)
d’o ‘ dnn

where D, is an (n~1)X(n-1) positive definite matrix satisfying the inductive assumption
and d, is a column (n-1)~vector with dy<0 and also dnn>0. From (4.1), we have
| D | =(dwm—d'sD2dy) | D, | . Since the matrices D and D, are positive definite, their
determinants are positive. Therefore we get & =dp,~d’,D-1d,= ID|/]D | >0 After

some computation, we have

4+ (1/€)(D- 1 da)D- oY (—1/e>D-ado>
D™= < (-1/6)DdY 1/e

Since all the elements of D~} are non-negative from the inductive assumption and
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D1d, <0, we can easily show that all elements of D! are non-negative.

Lemma 4.2 Let D be an nxn positive semidefinite matrix which is partitioned as

D (Du(m,m) Di;(m, n—m) > 42)

D;;(n—m, m) D;:(n—m, n—m)

And let Dy, =D;; — D3, D74, Dy;. Then Dy, is a positive semidefinite matrix.
Proof. We can easily show that the matrix P'DP is positive semidefinite if and only if

D is a positive semidefinite matrix for a non-singular matrix P. Putting
P < Ia —D~4,Dy, ’
0 Ii-m

DP ( a0 \
PDP= ,
0 Dosy /

we have

which is positive semidefinite. Hence D,,, is a positive semidefinite matrix.

For simplicity, denote a positive definite(semidefinite) matrix with all non-positive off

-diagonal elements by a p.(s.)d. matrix with all n.p.o.d. elements.

Proposition 4.3 Let D in (4.2) be a p.s.d. matrix with all n.p.o.d. elements. Then the

result of sweeping out, taking D,, as the pivot matrix,
( Im D 1,Dy, >
0 D22.1

(a) D74,D,; has all non-positive elements.

satisfies the following:

(b) D,., is again a p.s.d. matrix with all n.p.o.d. elements.

Proof. Since D,, has all non-positive elements and D}, has all non-negative elements
by Lemma 4.1, (a) holds.

Now we prove (b). D, is a positive semidefinite matrix by Lemma 4.2. Since D,
has all non-positive off-diagonal elements and all the elements of D,;D-%,D,, are

non-negative, D,,, is a matrix with all non-positive off-diagonal elements.



62 Byong Dok Kim, Jae Rong Choi and Akio Kudo

This proposition gives us the following:

(a) Recall the matrix (3.5) made from (3.4). Assume X, <0 and x >0. We can assume
this, because by applying simultaneous permutations of rows and columns, we can make
the matrix (3.5) satisfy this assumption. If there are no non-positive elements, then x itself

is the solution.

(b) If D in (3.5) is a p.s.d. matrix with all n.p.o.d. elements, then in the resulting matrix
(3.6), we have D~};x;,<0. In other word, the non-positive components remain non-positive
after the sweep out operation taking D,, as the pivot.

(c) The sweep out operation taking D,, as the pivot, of course, may create new non
-positive elements in the last column of the matrix (3.6). We can apply the same operation,
after making suitable permutations on rows and columns simultaneously. The Proposition
4.3 guarantees that the rows having the non-positive last component remain to have the
same sign.

(d) We can repeat the same process until we arrive at the situation where no more rows
with the non-positive last component exist except the set of rows whose diagonal
elements have been used as the pivotal element.

(e) Apply the permutations on rows and columns simultaneously so that they are in the

original order. Replace the non-positive elements by zeros, and this is the solution.

Remark 4.1 Since sweeping out with respect to the zeros in the last column does not
change the entities in it, we may sweep out with respect to only the negative elements in
applications.

Consequently, the algorithm of Sweep-the-Negatives can be stated in the following
sentences:

“If all the elements in the last column of the matrix(D, x) are all non-negative, x itself
is the solution. If the last column has one or more negative elements, select any one
among them, say the i-th one, and apply the sweep out operation taking the (i, i)-th
element as the pivot, and repeat this process until when all of the diagonal elements
corresponding to the negative elements in the last column have become 1’s. Replace the
negative elements in the last column by zeros, and this is the solution”.

An important feature of our algorithm is that we can select any starting point and any

path to arrive at the unique solution. The PAVA has the same feature.
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Now we will illustrate a numerical example.

63

Example 4.1 Consider the problems (3.2) and (3.3) for given y=(2,1,5,31), and the

restriction matrix A=(a,, a,, as, a.), where a,=(1, 0, 0, 0, a,=(-1, 1,0, 0, 2, =(-2, -3, 1,

0y, and a,=(-1, -1, -5, 1).

We have x=Ay=(2, -1, -2, 3y and the matrix D=(d,, dz, ds, d.), where d, =qQ, -1, -2,
-1y, d.=(-1, 2,-1,0¥,ds=(-2, -1, 14, 0, and d,=(-1, 0, 0, 28), which is a p.d. matrix with

all n.p.o.d. elements. The matrix corresponding to (3.5) is

1

-1

-2

D X -1
(A’ y> - 1
0

0

0

-2
-1

-1 2
0 -1
0 -2
28 3 (4.3)
-1 2
-1 1
5 5
1 31

Sweeping out the matrix (4.3) two times, taking (2, 2) and (3, 3) elements as the pivots

respectively, we have the following matrix corresponding to (3.6)

1/27 0
-16/27 1
-5/27 0
-1 0
1/27 0
1/27 0
5/27 0
0 0

o o o o © - O O

The solution of (3, 3) and (3, 2) are as follows:

b=

-1
0

(=

28/27
-16/27
-5/21
3
28/27
28/27
140/27
31

0 -
( d > =(28/27,0, 0,3y, u=d,=(28/27, 28/27, 140/217, 31y .
2
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Remark 4.2 When D is known to be non-singular, we need not work on a large matrix

in (4.3). Instead we can work on the smaller matrix (D, x) only.

5. Applications to Order Restricted Inference

The algorithm of Sweep-the-Negatives is useful as the condition is fairly mild. Some
typical examples are the cases that the parameter restrictions are as follows:

(@) tu+ 1 —t)is1 < e With (1 —t)w, —tey, =0, where @, is the weight of i, @ >0,
0< t<1 and ix>1.

b)) m<tw<t’u< -+ <ty with t>0, @ >0.

(c) Isotonic regression (the special case when t=0 in (a) or t=1 in (b)).

(d) Upper starshaped restriction with non-decreasing weight.

In detail, we discuss the cases (c), (d) and the duality.

5-1. Simple Order

The simplest partial order, deeply investigated and frequently applied in practice, is
Vi<Y:< +-- <yy, and it is called “Simple order” in Barlow et al.(1972). In this case the
isotonic problem can be reformulated as follows.

Given a set {y,, y;,---,yn} and weights(w,, @,,**,@n), find out the minimum of 4., (s —
v’ under the conditions g <p< -+ <y, Let V=1, Y2, ¥0), w=Qu, sz, ,un) and
W=diag(w,, @, *,wn), the diagonal matrix with diagonal elements w,, ay,***,wy,, then the
problem is to find out the minimum of (u —y) W(u—y) under the same conditions.

Let us consider the transformation x=Ay (6=Ag) where

-1 1 0 0 0
- 1 0 0

a= | 01 _ 6.1)
0 0 0 -1 1

The solution of the above isotonic regression is equivalent to

min(u —y) W —y)=min(z ) (@ —),
Ap20 A;ZO
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where A=AW-12, z=W'"2y, and y=W"2y. Inthis case, we have the matrix correspon-

( D x > , (5.2)
A y

where x= A;r =Ay and D=AA'=AW-'A’ is equal to

ding to (3.5) as

o lteoh -~} 0 0 0 °
w7y w i tw W3 0 0 0
0 0 0 er (n);lz Cl);_lz+(n)—;11_1 “6);11
0 0 0 - 0 ~w3l, @it

Note that D is a p.d. matrix with all n.p.o.d. elements. Therefore we can solve the isotonic
regression in case simple order by applying our algorithm instead of the PAVA. Now we

will illustrate a numerical example.

Example 5.1 Let Y=(Y,, Y., Y;, Y,) have a multivariate normal distribution with
mean vector g =(u, 2, us, ) and the covariance matrix W-'=diag(l, 2, 3, 1). In order
to obtain the isotonic regression fz of u, given y=(2, 3, 0, 3y, under the ordered restrictions
Ih < g < s < p1,, we ought to find

min (u—y} Wie—y) =min {(@—2+ a3+ a3+ w—3"}. 63

e LES

In this case, the matrix (5.2) is as follows:

3 -2 0 1

-2 5 -3 -3
0 -3 4 3
0 0 2 (5.4)
S22 -2

0 J3I /30
0 0

N
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Sweeping out(5.4) two times, taking (2, 2) and (1, 1) elements as the pivots, we can show
that the lower part of the last column in the resulting matrix is z=(21/11, 21/ 2/22,
7+ 3/11, 3Y. And thus we have the isotonic regression of (5.3), Z¢=(21/11, 21/11, 21/11, 3y,
considering the identity p=W-127.

It is clear that the algorithm of Sweep-the-Negatives is quite parallel to the PAVA.
Indeed, we can verify the parallelism by the following manner.
Given (y,,---,yn) and (@, -,@n), we apply the PAVA algorithm. Suppose (v,, yi;.) is a

violating pair. After pooling them, we have

V1, ¥i-1, Viie1s Y1+2,"',Yn)

where

@Y1+ @111V (5.5)

Vi1 =
@+ @iy

Note that y, >y, implies x; <0 in the algorithm of Sweep-the-Negatives. Sweep out the
matrix (5.2), taking the (i, i)-th element as the pivot, then we have the same result as

(5.5).
5-2. Upper Starshaped Restriction

Shaked(1979) derived the M.L.E. of normal mean vector subject to the starshaped
restriction. Starshaped vectors arise naturally in certain situations where finite popu-
lations are amalgamated.

A vector u=(u,",4) is said to be upper starshaped, provided
M1 Zl_lkZO, k:O’ l’ 2)"',])—1,

where u(k=1, 2,.--,p—1) is the weighted average of u, u,"**,; With weights @, @z, *, @
and u,=0. The upper starshaped ordering might be termed “Increasing on the Average”.

Note that if 0< 4 <41, k=1, 2,---,p—1, then g is upper starshaped.

Let us state a proposition without proof.

Proposition 5.1 Let W=diag(w,, a»,"--,&:) and A=(a,;;) be an nxXn matrix with
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0 i<j
ay= 1 1:] (56)
_Wj/zi(;lla)kv 0 <on < @y i>j.

Th.n AW-'A’ is a p.d. matrix with all n.p.o.d. elements.

Now consider the case (3.1), and again the minimizing problem (3.2). In addition, let the
unknown mean g be an upper starshaped vector with non-decreasing weights. ‘When we
take the transformation x=Ay where A=(a,;) satisfies the condition (5.6), Proposition
5.1 shows that the algorithm of Sweep-the-Negatives can be applied to the upper star-
shaped restriction with non-decreasing weights. Actually applying our algorithm to the

numerical example in Shaked(1979), we can obtain the same result.

6. Duadlity

Consider again the problem (3.2) for given vector y and matrix A, where AA’ is a p.d.
matrix with all n.o.p.d. elements. Now we make use of Sweep-the-Negatives for the
solution of (3.2) or (3.3) in case D! is a p.d. matrix with all n.p.o.d. elements, considering

their dualities. The primal problems are equivalent to

mEier (e —yY(u—y), (6.1)
where C={u | Ax =0}, and
r?if)l (6—x) D Y(6—x). (6.2)

We consider the case M=N, and denote a“} by a" for simplicity. Let A be a non
-singular matrix, and let A®=(a",--..a™y. From (2.3), we have A®=(AA")'A=(A")"\

Owing to Proposition 2.1, we get
C*={u* | @ u*)<0,ieN}={u* | —(A) u*20}.
The dual problem of (6.1) is to find x* which attains the optimal solution #* such that

— min Gt =3 Gt —3) =~ G =¥V G-y,
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,Q * is related to the optimal solution yx of (6.1) by the identity ﬁzy—/'}‘. In the like manner,

we have the dual of (6.2) as

—_ 1 *® —1 4 * —1
min (g +D7'x)y D(6*+D'x), (6.3)

irrespective of constant term and the optimal solution & is related to the optimal solution
8 of (6.2) by the identity #=x+D#".

The above discussions for duality give us an advantageous use of Sweep-the-Negatives

in the case that D! is a p.d. matrix with all n.p.o.d. elements.

Example 6.1 Let Y=(Y,, Y, Y5, Y.) be normally distributed with mean g and unit
variance. Now let X=AY, where the rows of A are a’,=(1, 0, 0, 0), a’,=(1/2, 1, 0, 0),
a’s=(1/2, 1/5,1, 0), and a’,=(2/5, 4/25, 3/10, 1).

Let us consider the M.L.E. of mean # under the ordered restriction that #=Ayu >0 for
given sample mean y=(-10, 25, 10, -7y or x=(-10, 20, 10, -4)’. We can easily formulate
the minimizing problems (6.1) and (6.2) taking A. From D=AA’, we have D-'=(d!, d?, &,
d*y, where d'=(29/20, -2/5, -17/50, -1/5y, d*=(-2/5, 21/20, -17/100, -1/10), d&®=(-17/50,
-17/100, 109/100, -3/10Y, and d*=(-1/5, -1/10, -3/10, 1Y, and x*=-D"'x=(251/10, -237/10,
-121/10, 7.

As D! is a p.d. matrix with all n.p.o.d. elements, we can solve the duality (6.3) rather
than (6.2). Sweeping out only the matrix (D?, x*) two times, we obtain(10, -25, -15, 0Y as
the last column. As the remainders of the last column, not swept out, are all non-negative,
the solution of the dual problem is & =(10, 0, 0, 0). By the identity §=x+D#", we have
=(0, 25, 15, 0y. Furthermore we are sure that z=(0, 25, 10, -7) and z*=(-10, 0, 0, 0) from
one of the identities x=A-'3, u*=-A’# and p=y—p".

The following proposition guarantees that a typical example of the duality is the case
that the restriction matrix A is given as (6.4).

Proposition 6.1 Let A=(a;;) be an nxXn matrix with

0 i<j

a (0<a<l) i>j.
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Then (AA’)™! is a p.d. matrix with all n.p.o.d. elements.

Another typical example is the case that the covariance matrix D is an equicorrelation
matrix with positive correlation coefficients. In fact, if D=(d,;) is an nxn matrix, where

dy=1 and d;;=r (0<r<1) (i#j), then we obtain Di=(d") with

gie {{1+(n—2)r}/[(1—r){1+(n—1)r}] i=j
B r/[1=p){1+@m—1Dr}] i#j,

which is a p.d. matrix with all n.p.o.d. elements.
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