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A Two-Stage Elimination Type Selection Procedure for
Stochastically Increasing Distributions: with an
Application to Scale Parameters Problem™
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ABSTRACT

The purpose of this paper is to extend the idea of Tamhane and Bechhofer(1977,
1979) concerning the normal means problem to some general class of distirbutions.
The key idea in Tamhane and Bechhofer is the derivation of the computable lower
bounds on the probability of a correct selection. To derive such lower bounds, they
used the specific covariance structure of a multivariate normal distribution. It is
shown that such lower bounds can be obtained for a class of stochastically increas-
ing distributions under certain conditions, which is sufficiently general so as to
include the normal means problem as a special application. As an application of the
general theory to the scale parameters problem, a two-stage elimination type
procedure for selecting the population associated with the smallest variance from
among several normal populations is proposed. The design constants are tabulated
and the relative efficiencies are computed.

1. Introduction

If k populations m, =, -, m are given and we wish to decide on the basis of a properly
chosen sampling scheme which one of these populations is the best one, various approaches
and methods have been studied up to now. A more detailed overview is provided by Gupta

and Panchapakesan(1979). Among those, two-stage procedures with screening in the first
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stage seem to be quite appropriate, since they are more economical than single stage
procedures but still technically not so complicated as sequential ones.

Cohen(1959) was the first to combine Gupta’s(1956)maximum mean procedure in the first
stage and Bechhofer’s(1954) natural decision procedure in the second stage. Later,
Alam(1970) proposed a minimax criterion in determining design constants of such two-stage
procedures. But these results were mostly confined to the special case of k=2 normal
populations with a common known variance.

Tamhane and Bechhofer(1977, 1979) extended Alam’s(1970) work to the general case of k
=2 populations with some optimization criteria. They studied in detail a two-stage elimina-
tion type procedure using a u-minimax design criterion, and the two-stage procedure was
found to be more efficient than the single-stage procedure of Bechhofer(1954). It should be
noted that their work was also restricted to the normal means problem. For the normal
means problem with a common unknown variance, it is well known that there does not exist
any single-stage procedure satisfying the required minimum probability of correct selec-
tion. Bechhofer, Dunnet and Sobel(1954) were the first to use Stein’s(1945) idea in devising
two-stage selection procedures. Unlike the case with a known variance, the unknown
variance is estimated at the first stage and the sample best in selected as the true best in the
second stage. Later, Tamhane(1976), and Hochberg and Marcus(1981) considered three
-stage procedures with the second stage set for elimination. Gupta and Kim(1984) proposed
a two-stage procedure, in which the unknown variance is estimated and the bad ones are
eliminated at the first stage.

The purpose of this paper is to extend the idea of Tamhane and Bechhofer(1977, 1979)
concerning the normal means problem to some general class of distributions and to illustrate
the extended theory by using some specific examples. The key idea in Tamhane and
Bechhofer is the derivation of computable lower bounds on the probability of correct
selection over the preference zone. To derive such lower bounds, they used the specific
covariance structure of a multivariate normal distribution which heavily depends on the
normality assumption. However, it is found that such lower bounds can be obtained for a
class of stochastically increasing distributions under certain conditions, which is sufficiently

general so as to include the normal means problem as a special application.
In Section 2, the formulation of the problem is given. A two-stage elimination type

procedure for selecting the largest parameter value and a design criterion following the

lines of Tamhane and Bechhofer(1977, 1979) are described. The main analytical results are
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contained in Sections 3 which deals with the probability of a correct selection and the
expected total sample size. As an application of the general theory to the scale parameters
problem, the problem of selecting the population associated with the smallest variance
from among several normal populations is treated in Section 4. The design constants are
tabulated and the reletive efficiencies of the two-stage procedures with respect to the

corresponding single-stage procedure are computed.

2. A Two-Stage Procedure and lts Design Criterion

Let m(1<i<k) be k populations, where the probability distribution of = depends only
on an unknown parameter 6, in an interval @ of the real line(1<i<k). Let << -+ <
6 denote the ordered values of the unknown parameters 6, 6:,--,6.. We assume that the
correct pairing between 6, and 6, is unknown. Any population associated with the largest
parameter value 6y, is called the “best” population.

Following Santner(1975), an indifference-zone will be defined in the entire parameter
space Q={8=(6,, 6, --,6&) | 60, 1<i<k} by means of a real valued function § on ®

having the following properties:

(i) 8(8)< @ for all 4=B

(ii) ¢, restricted on @', is a function onto ® where @ ={6=0 | §() =8}

Define the so-called preference-zone by

UN={=Q | O _y=<(0p)}, 2.1)

where the best and the second best are sufficiently far apart so that the experimenter
desires to insure the detection of the best with high probability. The complement of Q(d)
is called the indifference-zone. The following preference-zones have been used in the
literatures of selection and ranking.

Example 2.1(a) A location type preference-zone defined by & (8)=6— &*(*>0) is given
by

Q6*)={8 | Opg—O-1; 20"}, 2.2)
(b) A scale type preference-zone defined by &:(6)=6/6*(6*>1) is given by

Qo*)={0 | 6q=20*Op_1} . 2.3)
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The goal of the experimenter is to select the best population. The event of correctly
selecting the best population is denoted by CS. Following the indifference-zone approach,
the attention is restricted to selection procedures R which guarantee the basic probability

requirement;
Py {CS | R} =P* for all #=Q(9), 2.4)

where P*(1/k<P* <1)_ is specified prior to the experiment.

A selection procedure with its design criterion

We now describe a two-stage elimination type selection procedure and its design
criterion. At the first stage, the noncontending populations will be screened out using the
statistics T{"=TO(X,;,++, X M1 <i<Kk) based on n, independent observations X, -+, X,
from each of m(1<i<k). At the second stage, we compute the statistics T{?=T®(Xq 41,
+++,Xin,+n,) based on n, additional independent observations from each of the retained
populations, and selection is made using the statistics T, =u(T{", T{”) based on the overall
sample with an appropriate function u.

Here, the screening process will be done using the following Gupta-type procedure:

Retain = if and only if h(T?”)z?la)i T{" where h(-) is a real valued function such that
<j<

h(x)>x for each x and h(x) is continuous and strictly increasing in x.

Typical examples of h(:) are given by h(x)=x+d(d>0) and h(x)=cx(c>1) for location

type and scale type procedures, respectively.

Now the precise definition of a two-stage elimination type procedure R is given as

follows.

Stage 1. Take n; independent observations X, X, from each m(1<i<k) and
compute T{P=TMX,,, -+, Xyq,). Define an index set I by

I={i| h(Tf”)Zmaxk T, 1<i<k} (2.5)
lgj<

and let | 1| denote the number of elements in I.

(@) If | 1| =1, assert that the population associated with max T{" is the best.
1<j<k

(b) If |I]| =2, proceed to the second stage.
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Stage 2. Take n, additional observations X,,nzﬂ,---,X',nle from each population =, i
I, and compute T, =u(T{", T?) where T?=T®(X\n,+1,**,Xin,+n,). We then claim that the

population associated with max T, is the best.
1€

In the definition of the above two-stage procedure, the sample sizes n,, n, and the
functin h(-) will be chosen so that the procedure guarantees the basic probability require-
ment (2.4) and different design criteria lead to different choices. We adopt the following

unrestricted minimax criterion;

Minimize sup Eo(TSS | R)
1539
subject to inf P4(CS | R)=>P*, (2.6)

ssq(e) —

where TSS is the total sample size needed in the experiment.

3. Lower Bounds on the Probability of a Correct Selection

and Expected Total Sample Size

A main problem concerned with the construction of selection procedures using the
indifference-zone approach is to find the infimum of the probability of a correct selection
over the preference-zone Q(¢). Any parameter configuration achieving such an infimum is
called a least favorable configuration (LFC) for the procedure under study.

However, as can be seen from Alam(1970), Tamhane and Bechhofer(1977, 1979), Miescke
and Sehr(1980) and Gupta and Miescke(1982), there has been a conjecture that the LFC for the
elimination type two-stage procedure would Be the slippage one. Thus, instead of trying to
find the LFC, some lower bounds will be derived here as in Tamhane and Bechhofer(1977,
1979). To do so, the following assumptions are made regarding the statistics T{" and T,=
u(T{V, T®) used in the procedure R.

Assumption {A1). The distributions of T{" and T{? are stochastically increasing in &
@ for i=1, 2,---, k.

Assumption (A2). The function u(t,, t.), used to define the statistic T,=u(T, T), is

strictly increasing in each variable.

In the sequel, let F(- | ) and G(- | 6) denote the cdf’s of T{V and T,, respectively and
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let Hi(t,, t; | 6) denote the joint cdf of T{” and T,. It follows from the assumptions (Al)
and (A2) that F(- | ), G(- | 8) and H(-, + | 6) are non-increasing in 0,(1sisk)l. From this

fact the following results can be obtained.

Lemma 3.1 Under the assumptions (Al) and (A2), the following inequality holds.

inf Po(CS | R)=inf A(6), 3.1
8E0(8) sce
where
A(B)=E,[H*'(W(T), T, | o(6)]. (3.2)

Proof. Without loss of generality, we may assume that 6 <& < --- <. Then, for all §
€Q(9),

P4(CS | R)=PF, {h(T{") >max T, Ty=max T,}

1<jsk iel

2Pp (T 2T, T 2T, for all i=1,---k—1} (3.3)

=] klffl Hh), y | 6) dHE, v | 8)
Thus, the result (3.1) follows from (3.3) and the facts that H(-, - | 4) is non-increasing in

6 and 6,<d(4) for all i=1,.-- k—1, whenever §&Q(J).

However, it would be very difficult to compute A(#) in (3.1) in practice due to the
dependence between T\ and T,. Thus it seems reasonable to find a lower bound for A(8),
which can be easily computed even though it is slightly less sharp. Such a lower bound can

be obtained by the following result.

Lemma 3.2 Suppose that assumptions (Al) and (A2) hold. Then, for all §€@’,

A(8)2E,[F<'(W(T) | 6(6))] Eo[GX(Tu | 8(8)] (3.4)

Proof. The assumption (A2) insures that, for each fixed b, there exists a function o(-,
b) such that

u(T{, T®)<b if and only if T{"<w(T{, b),

Thus, for each a and b,
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P,{T®P<a, T,=u(T{, TP)<b}

=E,[P,{T{"<a, TP<uv(T{, b) | T}]
>E,[Po{T®<a | TP} P,{T<uv(T{?, b) | T?}]
=P, {T{’<a} P,{T <b}

which in turn implies that

E,[H'(W(T"), T | 6(6))]
=E, [F'(W(T{)| 6(6)) G (T | 8(6)].

Since F((T®) | 6(8)) and G(T, | 6(8)=G(T, T®)| (8)) are non-decreasing in T\,

E, [F*1(b(T") | 6(6)) G**(T | 8(6))]
>E,[F< (h(T) | 6(6)] Eo[G* (T | 6(6))]

by the Chebychev’s inequality. This completes the proof.

We summarize Lemmas 3.1 and 3.2 into the following theorem.

Theorem 3.1 Under the assumptions (Al) and (A2), the follwoing inequalities hold.

inf Po(CS | R) = inf A(8)= inf B(9), 3.5
sen(e) o=@ sc®
where A(#) is given by (3.2) and B(8) denotes the right hand side of (3.4).
Finally, it should be pointed out that any further simplification of the lower bounds A(8)
and B(#) can not be done without further assumptions on the structure of the statistical

model under study. The situation becomes quite simpler as can be seen in the following

examples.

Example 3.1 (Location parameters problem). Suppose that 4 is a location parameter of
the population m(1<i<k) with the preference-zone given by (2.2) in Example 2.1 (a).
Suppose further that 6 is also a location parameter of the distributions of T{" and T..

Then, for the location type screening procedure with h(x)=x+d, A(8) and B(#) do not
depend on the parameter 6.

In fact,

A(G)=A(0*)=Eo [H (TP +d+ 8", Ty +6%)] (3.6)
and
B(#)=B(6 ) =Eso[F*" (T +d+6*)] Epo [G*"Y(Tx+6%)], (3.7
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where F, G and H denote the cdf’s of T{", T, and the joint cdf of (T}, T,) when 6,=0,

respectively.

Remark. As a typical application to the location parameters problem consider the
normal populations z’s with unknown means 6’s and a common known variance ¢*(1<

i<k). Define the two-stage procedure by setting

_ n _ ny+n
TH=X{"= jél Xii/my, TP=XP= l221 Xis/ns,

j=n+
T,= U(Tfl), TP)= ( n, T("+n, sz))/(nx +n;)= XI
and h(t)=t+h(h>0). This is exactly the procedure of Tamhane and Bechhofer(1977, 1979).
Clearly, the assumptions (Al') and (A2) hold in this case.

Also, from the definition of the statistics T{", T{? and T, the corresponding cdf’s are

given as follows:

F(t; | 6(6) =Py, {X{"<ti} =@{vV/ n(t:— 6+3%)/0}
Glt, | 8(6) =Py {Xi<t,} =@{/ n; +n;(t,— 6+ 3*)/ o}
and
Hit,, t, | 8(6)=P,,(XV<t,, X\ <t,)}
=@, {v/ nit;~0+6*)/0, vy m T0(t,—+6*%)/0 | v/ n,/(n, +12)},

where @ is the cdf of the standard normal distribution and ®,{-, : | p} denotes the cdf of

the bivariate normal distribution with means 0, variances 1 and correlation p.

Therefore the lower bounds in Theorem 3.1 are given as follows:
AG)=E[®; {y mEP—8+6*+h)/e, v 1,0, [X—6+6*)/0 | p}]

=" 7 e/ m(e*+h)/o+x, vV mFn, 6*/0+y | p} dB.(x, ¥ | D)
and

B(6)= [~ & {x+/ m(8* +h)/o} dbx) [7, & (y+v/ mFn, 8*/a} dO(y)

with p=y/ n,/(n; +n,). Two lower bounds A(6) and B(#) do not depend on the unknown 8,
and they are exactly the bounds of Tamhane and Bechhofer(1979), in which the perfor-
mance of the procedure based on the lower bounds was investigated. The results indicate
that the procedures improve upon the single stage procedure of Bechhofer(1954), with the

one based on A(6) being slightly better than that based on B(#4). It may be noted that the
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lower bound A(6) in this case can be handled without much difficulty because the

integration involves only a bivariate normal distribution.

Example 3.2 (Scale Parameters Problem). Suppose that 6, is a scale parameter of the
population z(1<i<k). In this case, the preforence-zone can be given as that in Example
2.1 (b). Suppose further that 6, is a scale parameter of the distribution of T{" and T\. Then,
for the scale-type screening procedure with h{x)=cx(c>1), A(#) and B(6) are given by

A(6)=A(*)=E,; [H {c* TV, 6*Ty)]
and
B(6)=B(6*)=E,: [F* 1 (c6*T)] Ep=i [GFH(6*TV)] |

where F, G and H denote the cdf’s of T{", T, and (T{", T\), respectively when 6,=1.

In order to employ the u-minimax criterion in Section 2, it is necessary to know the set
of parameter points in Q at which the supremum of E«(TSS | R) occurs. It is shown that
the supremum is attained when 6, = 6, = --- = 4, the equal parameter configuration(EPC).

First, we derive a general expression of the expected total sample size. Note that the

total sample size(TSS) can be written as

TSS=kn; +n,S (3.8)

where S is the number of populations to be sampled at the second stage, i.e.,, S=0 if
|1| =1and S= | 1| otherwise.
Since
EsS | R)=Es(| 1l R)=Pe{| I | =1|R}

we have

EqS | R):?H [Py{h(TM) erna)i TV} —Pe{T{’ =max h(T{")}]
= = <j< j#i

k

=2 [ I Fbtx) | 8)dF(x | 6)—f T Fh'(x) | 6)dF(x | 8)]
= ! j#i

Thus, a general expression of E¢(TSS | R) is given by
E(TSS |R)=kn,+n. 3 [[ I Fh(x) | 6)dF(x | 6)
i=1 j#i

—f I F(h~(x) | 6)dF(x | 6)] (3.9)

In order to know the behavior of E{TSS | R) as a function of §, we need the following

regularity condition.
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Regularity Condition (C1). For the cdf F(x | 6) of TV, the partial derivatives f(x | 8)=

3‘2—(— Fix | 6), Fx | 6)= % F(x | 6) and a% f(x | 6) exist for all #=®, and for the

function h(+), the derivatives h(x)= -& h(x) and h-'(x)=-9- h-'(x) exist for all x.
dx dx

We now state the main result concerning the suprmum of the expected total sample size

in the following theorem.

Theorem 3.2 Suppose that the regularity conditon (C1) holds. Then, the supremum of

E4(TSS | R) is attained whenever 6, =#,= --- = 4, provided that
F(h(x) | 6) f(x | &)—h(x) f(h(x) | &) F(x | 6,)=0 (3.10)
and
F(h '(x) | 6) f(x | &)—h™'(x) f(h~'(x) | &) F(x | 6)<0 3.11)

for all 4, <@ and all x. Thus,
sup E4(TSS | R) =kn, +

s
kn, sup {J F*'(hx) | 6) dF(x | 6)— [F'(h*(x) | 6) dF(x | 6) }. (3.12)
6@
Proof. Consider, along the lines of Gupta(1965), a parameter configuration 6, = --- =6,

(=8)< 641 < -+ <6,. Then, under the regularity condition, it is easily seen that

2 E«S|R)
=/ ala—DF*he0) | 6) (Fhx) | 0)f(x | H)~hCOfh(x) | Fx | 6)} T Flh(x) | f)dx
+ 3 [aFmhe) | 6) (R0 | 0)fx | 6)-BIh) | 0FG | 0) 1T Fihix) | ) dx

— [ qla~DF*2(hx) | 6) {(Fr'(x) | O)fx | 6)~h(fh-'(x) | OF | 6))
x T Fh'(x)]| g)dx

j=a+1

~ 5 J aPriie) | 6) (BB | O)fx | 8)—hifthi(x) | 8) Fix | 6))

i=g+1

<1 F(h-'(x) | 6)dx.
]="Q""l
EaL

Thus, (3.10) and (3.11) imply a% Eo(S | R)20 and hence the supremum of Ey(S | R) is

attained whenever 6, = 6,= --- = §. Therefore the results follows from (3.8) and (3.9).
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It should be remarked that the conditions (3.10) and (3.11) are reduced to the monotone
likelihood ratio property of the density f(x | §) of F(x | ) in the location or scale

parameters problem in the framework of Examples 3.1 and 3.2.

4. An Application to Normal Variances Problem

For a dual problem of selecting the population associated with the smallest parameter

value 6(;;, the preference-zone is given by
U ={6€Q | 8;5=0(6,)},

where the real-valued function J(-) satisfies ¢(#)> @ for all 6.
Then, with some modification for final decision rules, a two-stage procedure R’ for this
problem can be constructed in exactly the same manner as that in Section 2 except that

the screening procedure is replaced by;
include = in the retained populations if and only if

h(TM<min T

1<j<k

where h(-) satisfies h{(x)<x for all x.
For the procedure R’, the following results can be obtained with some slight modi-

fications of the arguments for the procedure R in Section 3.

Theorem 4.1 Under the assumptions (Al) and (A2) in Section 3, the following inequalities
hold.

inf Po(CS | R’) =inf A’(ﬁ)zéi’ng B'(6) 4.1)

e - sce
where A’() and B'(6) are defined by
A(6)=E,[M“'((T®), T, | 6(6))] 4.2)
and
B'(6)=E,[{1-F((T{") | a(0)}*'] E,[{1-G(T, | 8()}*"] 4.3)
with

M(x, v | 8)=P, [T{">x, T\>y], 1<i<k.
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Theorem 4.2 Suppose that the regularity condition (C1l) in Section 3 holds. Then the
supremum of E¢(TSS | R’) is attained whenever 6, =64, = --- = 4 provided (3.10) and (3.11)

are satisfied. Thus,

sup E(TSS | R) =kn, +kn, sup [ [{1-F(h(x) | 6} dF(x | 6)
-8

PE

- [1-Fr'() | 0} dF(x | 6)] (4.4)

Remark. It is easily seen that the characterization of the procedures R and R’ depend
on the parameters only through ststistics T{" and T,(1<i<k). Thus, the results obtained
so far remain valid as long as the distributions of T{" and T, do not depend on the nuisance

parameters.

For the problem of selecting the population associated with smallest variance from
among several normal populations, Bechhofer and Sobel(1954) proposed a single-stage
procedure R,, in the framework of indifference-zone approach.

Gupta and Sobel(1962a, 1962b) investigated the same problem under the framework of
subset selection. The values of the sample sizes needed in the single-stage procedure R,
of Bechhofer and Sobel(1954) can also be obtained from the tables of Gupta and
Sobel(1962a). Extended tables are also available from Gibbons, Olkin and Sobel(1977).
Later Tamhane(1975) formulated this problem in the two-stage sampling scheme with
screening in the first stage and proposed a lower bound on the probability of correct
selection. However, due to the computational difficulties involved, no tables were given.

Let m(1<i<k) denote k normal populations with unknown means u(—o0 < g <00, 1<
i<k) and unknown variances. The ordered variances are denoted by o¢?;;<o%;,;< - <
o%yq. It is assumed that there is no prior information available about the correct pairing-
between = and o®;(1<i<k). The goal is to select a population associated with o?[;;.

It can be easily shown that this problem falls into the general framework with ¢(¢?)=

0?/8*(0<6*<1), while y,,---,ux are the nuisance parameters.

Let mn -
TP=3 (X~ X
j=
n+n;
TP=32 (X, — X%y

j=m+1

T=u(T, TR)=T +T%

and hit)=ct (0<c<1)
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where n nAn
X :.21 Xiy/n;, and XP= 3 Xii/02.
i=

j=n+1

An elimination type two-stage selection procedure R, is proposed as follows:

Stage 1. Take n, independent observations X,,, -, X, from each =(1<i<k), compute

T and determine an index set I of {1, 2,---,k} where

I={i| cT¥®<min TP}, 0<c<1 “4.5)
1sjsk

(@) If |I| =1, assert that the population associated with min TV is the best.

l<j<k

(b) If | 1| =2, proceed to the second stage.

Stage 2. Take n, additional independent observations Xin+1, X0 +n, from each
populations =, i€, compute T,=T{"+T{® and assert that the population associated with
r?el? T; is the best.

Note that T?/¢%, T4 /6% and T:/c?% have the chi-squared distributions with v, =n, —1,
w=n,—1 and v=uv+1»,=n,+n,—2 degrees of freedom, respectively. However the joint
distribution of T} and T, is rather complicated and inconvenient to compute in this case.
Thus we use the lower bound B’(#) in Theorem 4.1 to determine the design constants (n;,,

n,, ¢) for the two-stage procedure R,. By straightforward computation,
B(6%)=/, {1-F,(co*x)}*! dF, (x) [, {1-F.(e*y)}*! dF.(y), (4.6)
where F, () denotes the cdf of chi-squared distribution having v degrees of freedom.

Remark. Tamhane(1975) proposed almost the same procedure as the procedure R;. The
only difference is the statistic T, used in Stage 2. His T; is defined by

m _ n+n; _
T1='21(X,,j _X1)2+ 2 (Xi,j—X|)2
j=

j=m+1

n+n,

where X, :El X./{n; +n,). Hence the degrees of freedom of T, is v=n, +n;—1. When the
population mean g (1<i<k) are all known, with the obvious definitions of the statistics,
the two procedures are exactly the same. He also derived a lower bound C(5*), say, on the

probability of a correct selection, of the form

Ce)=J" (1-Fycs*x)}** dF,,(0)+ [, (1-F(&*x)} dF,(0)—1.  (47)
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For the same v, and v(this is the case when all x’s are known), B'(6*)=C(d6*) since ab>

a+b—1 for a, be(0, 1), and hence B'(d*) is a less conservative lower bound.

The supremum of the expected total sample size can be obtained from Theorem 4.2 and
is given as follows.

sup E,(TSS | R))

€0

—kn, +kn, [ {1-F, (@)} dF,,(x)— [ (1-Fy, &/ dF, ()], (4.8)

Therefore the corresponding optimization problem to determine the design constants (n,,
n,, €) is to minimize (4.8) subject to B'(6*)>P*. This is an extremely complicated integer
programming problem with a non-linear objective function.

To solve the optimization problem, we have treated n, and n, as continuous variables,
and used the SUMT(Sequential Unconstrained Minimization Technique) algorithm of
Fiacco and McCormick(1968). We denote by (ﬁl, ., C) a solution to this continuous version
of the optimization problem. The problem has been solved numerically for k=2(1) 10, P*=
0.90, 0.95 and +6%=0.50(0.05) 0.70. The results are given in Table 1.

In supplying the objective function (4.8) and the constraint function (4.6) to SUMT
algorithm, we used the 32-point Laguerre numerical quadrature formula to evaluate the
integrals, and the values of the chi-squared cdf’s were evaluated using the 32-points
Legendre numerical quadrature formula. All computations were carried out in double
precision arithmatic on VAX-11/780 at the Department of Statistics of Purdue University,
indiana, U.S.A. Throughout the computations the convergence criterion was fixed to be
1% 108, The tabulated values are rounded off in the fourth decimal places for n,, and ng,

and in the sixth decimal places for c.
The Performance of R, Relative to R,

In order to get some insight into the performance of the two-stage procedure R,, we

consider the ratio(termed relative efficiency RE),
RE={E4(TSS | Ry)/kn,} x100(%), 4.9)

where n, is the sample size needed for the single-stage procedure of Bechhofer and
Sobel(1954) to satisfy the same probability requirement. Clearly RE depends on 4, (6*, P*)
and k.
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Table 1. Design Constants for the Two-Stage Procedure R,

k=2
P¥=0.90 P*=0.95
SEE n N2 ¢ m N2 ¢
0.50 4,672 6.029 0.99999 6.544 6.354 0.92158
0.55 5.365 3.894 0.76742 6.178 3.825 0.46474
0.60 5.039 2,211 0.17160 7.771 4.964 0.45385
0.65 6.435 3.426 0.21494 10.181 6.975 0.47896
0.70 8.621 5.420 0.27360 13.960 10.354 0.52255
k=3
P*=0.90 P*=0,95
/¥ " n2 ¢ n ne ¢
0.50 6.208 6.542 0.90887 6.901 5.003 0.63690
0.55 5.746 3.936 0.43711 8.328 5.527 0.56113
0.60 7.204 4.982 0.42234 10.606 7.296 0.56670
0.65 9.417 6.829 0.44267 14.037 10.107 0.59111
L 0.70 12.201 10.822 0.47227 19.426 14.711 0.62732
k=4
P*=0.90 P*=0.95
/S ™ e P na fa &
0.50 5.551 4,649 0.54605 7.459 5.377 0.57673
0.55 6.721 5.609 0.51311 9,313 6.936 0.58219
0.60 8..479 7.249 0.51621 11.950 9.270 0.60041
0.65 11.119 9.822 0.53815 15.897 12.840 0.62928
0.70 15.293 14.016 0.57488 21.727 18.912 0.66103
k=5
P*=0.90 P*=0.95
/I n n2 ¢ n n2 ¢
0.50 5.899 5.547 0.53513 7.850 6.194 0.56399
0.55 7.287 6.799 0.52954 9.880 8.087 0.58431
0.60 9.264 8.923 0.54652 12.733 10.866 0.60955
0.65 12.202 12.165 0.57446 16.992 15.071 0.64215
0.70 16.754 17.388 0.60969 23.766 21.753 0.68249
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Table 1. Design Constants for the Two-Stage Procedure R;{continued)
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k=6
P*=0.90 P*=0.95
T m n2 c m n2 ¢
0.50 6.138 6.034 0.51152 8.128 6.906 0.55542
0.55 7.663 7.763 0.53191 10.260 9.061 0.58159
0.60 9,787 10.273 0.55662 13.257 12.206 0.61114
0.65 12.943 14.057 0.58952 17.737 16.930 0.64665
0.70 17.775 20.145 0.62632 24.894 24.289 0.68800
k=7
P¥=0,90 P*=0.95
/% n N2 ¢ n n2 ¢
0.50 6.238 6.640 0.49599 8.345 7.534 0.54877
0.55 7.940 8.589 0.53035 10.537 9.900 0.57717
0.60 10.174 11.410 0.55998 13.643 13.344 0.60980
0.65 13.488 15.661 0.59628 18.563 18.491 0.65756
0.70 18.569 22.392 0.63444 25.741 26.644 0.69189
k=8
P*=0.90 P*=0.95
i ny n2 ¢ m fa P
0.50 6.440 7.118 0.48408 8.528 8.075 0.54346
0.55 8.157 9,308 0.52725 10.754 10.640 0.57246
0.60 10.'477 12.403 0.56057 13.946 14.345 0.60751
0.65 13.923 17.032 0.59933 19.344 20.491 0.66845
0.70 19.214 24.432 0.64026 26.431 28.944 0.69637
k=9
P*=0,90 P*=0.95
VEE n n2 p m n2 e
0.50 6.504 7.693 0.47554 8.685 8.558 0.53907
0.55 8.335 9,949 0.52377 10.931 11.297 0.56789
0.60 10.724 13,274 0.55959 14.192 15,237 0.60478
0.65 14.269 18.254 0.60020 19.834 21.536 0.66514
0.70 19.741 26.317 0.64419 26.924 30.716 0.69566
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Table 1. Design Constants for the Two-Stage Procedure R,(continued)

k=10
P*=0.90 P8=0.90 P#*=0.95
VEx m e < h2 s
0.50 6.609 8.126 0.46947 8.822 8.991 0.53317
0.55 8.484 10.524 0.52004 11.085 11.888 0.56385
0.60 10.932 14.058 0.55798 14.399 16.037 0.60188
0.65 14.560 19.347 0.60004 20.013 22.682 0.66819
0.70 20.125 27.832 0.64840 27.292 31.970 0.69114
Taoble 2. Relative Efficiences RE of the Procedure R,
P*=0.90
vV E*
0.50 0.55 0.60 0.65 0.70
k EPC LFC EPC LFC EPC LFC EPC LFC EPC LFC
2 99.9 94.5 99.9 97.6 99.9 94.9 96.3 91.2 97.5 92.0
3 98.1 92.7 98.3 85.2 95.6 83.6 95.9 84.5 97.5 86.0
4 99.5 85,7 92.7 79.5 94.7 81.3 94.0 80.8 96.4 83.0
5 95.8 82.3 91.9 78.8 95.7 81.9 88.4 75.6 94.3 80.5
6 91.0 78.4 89.4 76.7 89.3 76.5 93.1 79.5 90.4 77.0
7 93.4 80.7 86.2 74.2 81.7 75.2 88.8 76.0 88.5 75.5
8 88.4 76.5 88.5 76.3 85.5 73.5 84.6 72.4 86.2 73.5
9 89.9 77.9 79.6 68.9 87.3 75.2 86.4 74.2 85.8 734
10 84.3 73.2 80.9 70.1 84.6 73.0 81.9 70.4 82.5 70.7
P*=0.95
vE*
0.50 0.55 0.60 0.65 0.70
k EPC LFC EPC LFC EPC LFC EPC LFC EPC LFC
2 99.9 96.0 99.9 85.8 99.9 84.3 99.9 85.2 98.4 83.4
3 99.9 86.8 99.7 82.7 98.1 81.2 96.9 79.9 96.9 80.0
4 94.9 79.1 95.5 79.1 97.5 80.3 91.9 75.4 93.6 76.5
5 92.6 77.1 94.8 78.6 93.7 77.2 91.0 74.7 92.6 75.7
6 89.1 74.4 92.7 76.9 89.0 73.4 88.7 72.9 89.8 73.6
7 91.5 76.5 90.0 74.8 87.7 72.5 85.8 70.8 86.5 71.0
8 87.1 73.0 87.0 72.5 86.0 71.3 83.6 69.0 86.6 71.2
9 88.5 74.4 84.0 70.2 84.2 69.9 85.4 70.7 84.5 69.6
10 84.2 70.9 81.1 679 85.2 71.0 81.0 67.4 82.1 68.0
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Since R, is a special case of R,(with c=1 or o), it immediately follows that 1>RE(EPC)
>RE(LFC) and R, is at least as good as R,. The values of RE are given in Table 2.

From Table 2 one can see that the relative savings by applying the two-stage procedure
R, are not dramatic. However, even a small relative saving means a lot in terms of total
sample size when k and/or n, is moderately large. Also it can be observed that the relative
saving increases as k becomes large. This is in accordance with one’s intuition that the
screening process would be helpful when k is large.

To illustrate the use of Table 1, suppose that k=6 and that the experimenter specifies
6*=(0.7)2, P*=0.90. Then the design constants necessary to implement the two-stage
procedure R; are given by n, =17.775, n,=20.145 and ¢=0.62632. Thus we take n,=18
observations from each populations and compute the sample variances SH1<i<6). If the
number of S?’s smaller than min S?/0.62632 is one, stop sampling and assert that the
population associated with min S? is the best. If more than one S’s are smaller than min
$2/0.62632, take n, =21 additional observations from each of the contending populations
and assert that the population associated with the smallest sample variance based on the
pooled sample of size n,+n,=39 is the best. In using this two-stage procedure R;, the
average value of the total number of observations is 90.4% at EPC and 77.0% at LFC
compared with that of the single-stage procedure R, of Bechhofer and Sobel(1954).

Large Sample Approximation

For solving the optimization problem involving(4.8) and (4.6), it is extremely tedious to
compute the integrals when n, and/or n, are large. Hence an approximate solution for
large sample size is useful. We shall give an approximate solution to the problem based
on normal theory.

It is well known that if S? is the sample variance associated with the variance o7, then
/(_I-IT)/Z log(S?/6?) is asymptotically normally distributed with mean zero and variance
unity as the number of degrees of freedom v, associated with S?, tends to infinity. From

this fact, it can be shown that, when v is large
[7 {1-Fu@)p dR= [, @}(x+d)de(x) (4.10)

where d=, (v—1)/2 log(a~!), and F,(-) is the cdf of chi-squared distribution with v

degrees of freedom.
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Replacing the integrals in (4.6) and (4.8) involving the chi-squared cdf’s by the corres-
ponding integrals of the right hand side of (4.10) involving the normal cdf, we can obtain

after slight modifications the following asymptotic version of the optimization problem:

Minimize
ki +keh (@ (x+d)— &% (x—d)}dB(x) (4.11)
subject to
J7 o ix+d+e)do) [T _@ix+y ¢l Fc3) de(x)=P* (4.12)

If we denote the solutions to (4.11) and (4.12) by (Ci, Cs, d), then the approximate values
of the design constants(n,, n,, ¢) of the procedure R, are computed using the following
formulas:

~

~ Cy 2 -1
n _2{——log(é‘"‘) 1242 log(k —1),

-~

~_ Cz 2 -1
n, =2{ Tog(6™Y }2+2 logk —1)

and

c=exp{—dy 2/(n, —2)}

The second term in the formula for ﬁl(or n,) is a slight correction term based on
empirical results cited from Gibbons, Olkin and Sobel(1977). The correction term is added
since the first term drifts below the true value of ﬁl(or n,) as k increases.

The values of (c,, Cz, d) can be found in the tables of Tambhane and Bechhofer(1979). To
illustrate numerically the closeness of the normal approximation we take the values of €,
¢z, ) out of Table 2 of Tamhane and Bechhofer(1979) corresponding to P*=0.95, k=10,
namely, ¢, =2.452, ¢,=2.744 and d=1.322. Then the approximate values of (n,, n,, ¢) for
0*=(0.7)* are (28.025, 33.988, 0.69317). These approximate values are slightly larger than
the corresponding exact values (27.292, 31.970, 0.69114) given in Table 1.
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