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ABSTRACT

This paper proposes an approach to the identification of transfer functin models.
A strategy for the identification of the model structure is based on R and S arrays
constructed by the impulse response function of the model. Theoretical patterns of
the arrays associated with the mode! are investigated, and the practical implemen-
tation method of the suggested approach is also discussed. Finally two published

samples are employed to demonstrate the practicability of the approach.

1. Introduction

In recent years, there has been a growing interest in the problem of determining the order
of the transfer function model. The importance of this problem is clear. Before the par-
ameters of the model can be estimated, the order of model needs to be specified. There are
two major approaches to this problem.

The first is that suggested by Box and Jenkins(1976) which involves not only the examina-
tion of auto and partial-correlation functions, but also that of cross-correlations between
the pre-whitened input and output series. However skills are required to recognize the
patterns of the correlation functions. The second approach is to choose the best model which
minimizes a criterion(e.g. FPE, AIC), as advocated by Akaike(1969, 1974), Chan(1983) and
Poskitt(1989) developed a computer package(TF SIFT) and a new criterion respectively for
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this approach. But, this approach is difficult if not time consuming.

This paper suggests a new approach which uniquely determines the order of the transfer
function model and which is readily observable. Here we discuss only about the identifica-
tion method of the model. Noise function identification, estimation and diagnostic checking
for such model are traceable to the work of Box and Jenkins(1976). The approach uses “R
and S arrays” which are originally adopted by Gray, Kelly, and McIntire(1978) for estima-
tion of autoregressive moving-average(ARMA) process orders. For the construction of
those arrays, we use the impulse response function associated with the model. The
practicability of the approach is demonstrated by using published series and comparing the
models obtained from the approach with those already published in the literature.

The content of this paper is as follows. Since R and S arrays are used in the suggested
approach, a brief review of the definitions and theorem necessary to establish the arrays is
given in Section 2. In Section 3, we develop the theoretical basis for the approach. The
practical implementation of the approach described in Section 3 is presented in Section 4.
In Section 5, the practicability of this approach and hence R and S arrays approach is

demonstrated by using published series.

2. Definitions and Theorem

Definition 1. Let m be an integer, h>>0, and let f be a real valued function. Also let fn=
f(mh). Then Gray, Kelly, and McIntire(1978) define R and S array elemtns as following

ratios of Hankel to bordered Hankel determinants;

Rn(fm):Hn[fm]/Hn[l:fm] 2.1
and
Salfm)=Hons1 [1:fn]/Ha[fa], 2.2)
where fm fm+ 1 fm+ n—1
S frez fnen
Hilfn]=
fm+n—1 fm+n fm+2n—2

Ho[fn] =1, 2.3
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and .
1 1 1
fm fm-f-l fm+n
fm fm fm n
Hn_H [1;fm] _ +1 +2 +n+1
fm+n_1 fm+n fm+2n—l

Pye and Atchison(1973) have shown that a recursive calculation relations between (2.1)
and (2.2) are

Ros1(fn) =Ralfms1) {Salfme1)/Salfm)—1} 2.4)
and

Sn(fm):Sn—l(fm+l) {Rn(fm+1)/Rn(fm)_1} s (25)

with starting conditions

Sofw)=1, m=0, +1, +2,---+--
Ri(fm)=fm, m=0, +1, +2,-----.

In future we only use (2.4) and (2.5) to define Ry, ,(fm) and S,(fy). In (2.4) and (2.5) we have
tacitly assumed that S,(fn)#0 and Ra(fm)#0. If R,(fn)=Ru(fn:1)=0, we leave S.(fn)

undefined. However, if Rn(fn) =0 and R, (fn,:) %0, we defined S, (fn) = +00. We used a similar
definition for R, .(fn).

Definition 2. A function f will be said to be an element of L(n, A) over a set of integers

I ={m,, my+1,---- } if there exists a smallest integer n>0 and a set of &’s such that f is

a solution of the difference equation
Zoy— 0 Zmoy oo —62Zm-n=0 for mel.

Gray, Houston, and Morgan(1978) derived following theorem which forms a basis for
the development of several of the results to follow.

Theorem 1. (Gray, Houstons, and Morgan, 1978). Let n>>0, and suppose Sa(fn) and Ry (fa)
in (2.1) and (2.2) are defined: i.e. the denominators in (2.1) and (2.2) are not zero, and S,

(fu)#0. Then freL(n, A) for m>m,+n if and only if S,(fs) is constant, as a function of

m for m>m,.
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3. Single Input Transfer Function Model: The Stationary Case

The model that is of immediate concern is defined below(See Box and Jenkins, 1976).

Definition 3. A bivariate stochastic process {(X:, Yi)}, t=0, +1, +2, -, is said to be single

input transfer function model of order (r, s) with the transfort delays b, if

Y.=06"'(B) W(B) X;, 3.1)

where
8(B)=1—6B—4,B*— -« — & B, W(B)=w,—w,B—w,B*— - —w, B,

and B denotes the backward-shift operator.

Note that equation(3.1) is a parsimonious representation of linear filter transfer function
Y.=V(B) Xi, (3.2)
where V(B)=(vo+v,B+v,Bz4 .ot ) and the weights vy, vy, V2,--. are called the impulse
response function of the system.
In this section we show how Theorem 1 can be expanded in such a way as to establish a
new criterion which uniquely determines r and s and which are readily observable.

Theorem 2. Let {(X., Y1)} be a stochastic process which follows a transfer function model
of order (r, s) with the impulse response weights v, and the transfort delays b. Suppose that
Su(Vm) and Ru(vy) are defined, n>0 and S.(vn)#0. Then for some integer m, and some

constant ¢, +0

Sn(vm):cl, m=m,
SaVm)#C;, m<m,
if and only if n=r and m,=b+s—r+1. Moreover
¢ =(-1) (1—3"1 4), 3.3)

where the &’s are coefficients defined in (3.1).
Proof. Since {(X,, Y:)} follows a transfer function model of order (r, s), comparison of (3.

1) with (3.2) gives tht identity

4(B) V(B)=W(B) B". (3.4)
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On equating coefficinets of B, we find a difference equation
6(B) V=0, m>=b+s+1. (3.5

This implies vo&L(r, A) for m>b+s+1. and hence the first part of the theorem follows
from Theorem 1. From the first part of this theorem and the definition of S;(vn), equation
(3.3) follows by simple application of the Cramer law to (3.5). That is, the numerator Hr.,

[1:Vn] of Si(vm) may be written
(-1 1—% &) He[vn] for m>b+s—r+1.
i=1
This gives
Se(vm) = Hes [1V] /He [¥n] =(-1F (13 &) for m>b+s—r-+1.

In case, s—r+1<0, starting values v, for m<b will, of course, be zero, but even in this
case first row of H;[v,] contains at least one nonzero element, and hence the above resuit
holds for every combination of r and s. Note that stationary condition of the transfer
function model implies that 1—2 & +C, and hence ¢, #0.

I=1

Corollary 1. Let the conditions of Theorem 2 be satisfied with v,, replaced by (-1)"vp,.

Then for some integer m, and some constant ¢, +0,

Sa{(-1)"Vm}=¢C;, m=my

Sn{(-1)"Vm}#c,, m<mp 3.6
if and only if n=r and m,=b+s—r+1. Moreover,
c=(-1)F (I—El(-l)'&}- 3.7

Proof. From(3.5),

1-2 & BYyvn=(1-2 (-1)'6; BY-1)"v, =0, for m>b+s,
so that f, =(-1)"vmEL(r, A) for m<b+s. Thus, the proof follows in the same manner as
in Theorem 2.

Corollary 2. Under the assumption of Theorem 2 and Corollary 1
Resi(Vim) =Ret 1 {(-1)"V } =0 for m=b+s—r+1. (3.8

Proof. The result follows at once from the above theorems and the recursion rule(2.4).

Above results state that a process is stationary transfer function of order (r, s) with
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transfort delays b if and only if the associated R and S arrays are as in Table 1 and 2 for the
impulse response weights {vn}. Following tables display arrays of number referred to as “R
and S arrays”. They are computed via (2.4) and (2.5). Since vy, will be given in each case, we
shorten the notation within the tabular to S,(vm)=Sa(m) and Rn(vm)zR;,(m).

The S-arrays in Table 1 reveals constant behavior such that r-th column of the table
has constant elements from (b+s—r+1)-th row. Thus, we can see that the S-arrays in

Table 1 characterize order (r, s) of the transfer function model.

Table 1. S-arrays for S,(vn). r>b

NG 1% 2 b-1 b px* re]¥E*

0 u u u o S0) S;.1(0)

u u *o Sb(l) Sy(1) Seafh

2 u u Sb-1(2) Sb(2) S.(2) S (2)
b-2 u s, e Speg(0-2) Sb-2) e Spb-2) S, (b-2)
bol| 2m Salb-1) e Spg(b-1)  Syb-1) . Spb-1) S, (b-1)

b | Silb)  Sub) e Spot(b) S (b) e S,(b) Sre1 (b)

mo-1 | Si(mo-1) Sa2(my-1) S p-1 (mo-1) Sb(mO'l) Sp(mo-1) — ¢
mo | Si{mg) Sz(my) S b-1 (mo) Sb(mo) ci1 c1[0/0-1]
mo+l | Si{mo+1) Sa(mg+1) S p-1 (mo+1) Sp{mo+1) c1 c1{0/0+1]
i | Si(j) Sz(j) Shoq (j) Spii c1 c1[0/0-1}
* Note undefined element stretches.

* % Note constant stretches.
% % % Note undefined stretches.
mg=b+s—r+1.
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Table 2. R-arryas for Ro{vm). S—r=0, b<r-+1

NN 1* 2 b-1 b b+1 rel®*
0 0 0 Ry, (0) Nonzero
1 0 Ry (1) R, (1) Nonzero
2 0 Ry (2) R,(2) Rb+l(2) Nonzero
b-2 0 0 R .1 (b-2) Ry (b-2) Ry, 1(b-2) Nonzero
b-1 Ry (b-1) R -y (b-1) Ry (b-1) Ry, (b-1) Nonzero
b vy Ry (b) R b_l(b) Rp(b) Ryl (b) Nonzero
mo Vm,  Rgimo) R p_q(ma) Ry(mo) Ry, q(mo) 0
1Tl0+1 Vm°+1 R2 (m0+1) Rb_l(mo+l) Rb(m0+1) Rb+1(mo+l) 0
i Vi Ro (j) Ry, (i) Ry(j) Ry, 0

%  Note zero stretches.

* * Note zero stretches.
me=b+s—r+1.

Table 2 shows that the first column has continuing zero behavior up to (b—1)-th row.

Hence the behavior of the R-arryas is usually adequate for describing transfort delays b.

Although zero sequence of (r+1)-th column in the R-arrays characterizes both r and s,

their column behaviors are not as distinct as the S-arrays when s-r<0.

The arrays do not differ in their pattern if f, =(-1)"vy,. Of course, in that case first

column in the R-arrays is made up of values of (-1)™vn. In the special case when r=0, (3.

1) and (3.2) give v, =0 for m<b and m>b+s. Hence, without using R and S arrays, we can

identify the order s directly from the pattern of the impulse response function.

In order to demonstrate the manner in which the above results can be utilized to identify

a transfer function model of order (r, s), we now consider a simple example using a known

transfer function model.
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Example 1. Consider the R and S arrays for the process

(1-57B) Y¢=-(.53+.37B+.51B?%) X,_,,

where {(X, Yo}, t=1, 2,++, is a bivariate stochastic process.

Table 3 and 4 present R and S arrays for f, = vy, and f, = (-1)™vy,, respectively. The impulse
response weights {vn} are calculated from the identity relation in (3.4). Close inspection of
those tables is worthwhile since all of the previous results are illustrated there and the
remainder of this paper is predicated on those results.

We have presented theoretical R and S arrays for the single input transfer function model.
These seem to be a satisfactory approach to the problem of identifying the orders (r, s) and

the transfort delays b in the model. Since we can easily see that general incremental changes
a.=(1-B) 1-B%)* Y, and 8=(1—B)* 1-B°)* X,

satisfy the same transfer function as do Y; and X, in (3.1). Identification of the prewhitened

or the nonstationary transfer function model of a form

Table 3. R and S arrays at f, =vy,

Ry(m) R;(m) Rs(m) m So(m) Si(m) S.(m)
0 0 0 0 1.00 u u

0 0 -.53 1 1.00 u ®

0 .53 -1.9575 2 1.00 - o -.3450
-.53 -.1522 -2.2464 3 1.00 .2681 ~4,7822
-.6721 2,061 .000 4 1.00 .3288 .43
-.8931 .000 .000 5 1.00 -.43 u
-.5091 .000 .000 6 1.00 -.43 u
-.2902 .000 .000 7 1.00 -.43 u
-.1654 .000 .000 8 1.00 -.43 u
-.0943 .000 .000 9 1.00 -.43 u
-.0537 .000 .000 10 1.00 -.43 u
-.0306 .000 .000 11 1.00 -.43 u
-.0175 .000 .000 12 1.00 -.43 u
-.0100 .000 .000 13 1.00 -.43 u
-.0057 .000 .000 14 1.00 -.43 u
-.0032 .000 .000 15 1.00 -.43 u

Note: U denotes an undefined number.
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Table 4. R and S arrays AT f,=(-1)"vy

R, (m) Rz {m) Ra(m) m S,(m) S, (m) S2(m)

0 0 0 0 1.00 u u

0 0 .53 1 1.00 u o

0 -.53 .3083 2 1.00 © 2.1910
.53 -.0180 .3039 3 1.00 -2.2681 -35.3425

-.6721 -.2910 .000 4 1.00 -2.3288 1.570
.8931 .000 .000 5 1.00 -1.570 u
-.5091 .000 .000 6 1.00 -1.570 u
.2918 .000 .000 7 1.00 -1.570 u
-.1645 .000 .000 | 8 1.00 -1.570 u
.0943 .000 .000 | 9 1.00 -1.570 u

-.0537 .000 .000 10 1.00 -1.570 u
.0306 .000 .000 11 1.00 -1.570 u

-.0175 .000 .000 12 1.00 -1.570 u
.0100 .000 .000 13 1.00 -1.570 u
.0057 .000 .000 14 1.00 -1.570 u
.0032 .000 .000 15 1.00 -1.570 u

Note: U denotes an undefined number.

a=d(B)"! W(B) B

can be immediately accomplished by the same R and S arrays constructed in terms of the

impulse response weights between a, and g..

4. Transfer Function-Noise Model Identification

The model that is of immediate concern is shown below.
Yt:é\—l(B) W(B) X+ N 4.

This is a linear system corrupted by noise N,, at the output and assumed to be generated
by an ARIMA process which is statistically independent of the input X, and the other
notations in (4.1) are defined as before.

As already stated, the problem of modelling the transfer fucntion-noise model is that of

selecting order (r, s) and transfort delays b.
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Two-stage least squares method described by Chan(1983) is adopted to estimate the
impulse response function, related with (4.1), which will be utilized in calculating individ-

ual elements of R and S arrays. Let
Z.=V(B) X4,

where V(B)=6"%B) w(B) B*. Then (4.1) can be rewritten as

Y:=V(B) X, +N, 4.2)

This is also known as the impulse response model. Since N, is uncorrelated with X., V(B)
can be estimated using linear least squares from (4.2). An estimate of Z, can be calculated

using the following equation
2=V X,

where V(B) represents an estimate. The order of V(B) is chosen using AIC. Using 7. and
X, the parameters of V(B) can be consistently esstimated(See Durbin. 1961), while trans-
fort delays b can be initially estimated by counting Low many non-siginificant parameters
V(B) starts with.

Constructing and observing the patterns of R and S arryas(Table 1 and 2) based on the
second least squares of the impulse response weights, we can identify order (r, s) of the
model. Here we should remember that, in the presence of noise, the estimated impulse
response weights would not give exact constant patterns as in Table 1 and 2, but show
characteristics of them. A similar consideration of the (r+1)—th column in the S-array
suggests that highly variable behavior should essentially continue from the (b+s—r+1)-th
row, as later examples clarify. The reason is that the 0/0 quantity, appeared in the (r+

1)-th column, will be practically replaced by the quotient of two samll numbers.

5. Applications

To demonstrate the practicability of the described procedure and hence of R and S
arrays approach, published series are used and comparisons are made with models
produced by the approach and those already published. Two examples, published in Box
and Jenkins(1976), are shown here. The actual successive pairs of observations X:, Y, are

labeled as Series ] and Series M at the end of the volume.
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Example 2. As a first illustration, consider the data on sales Y, in relation to a leading
indicator X,, listed as Series M. Box and Jenkins(1976) showed that the data was well
fitted by the nonstationary model of order (r=1, s=0) and transfort delays b=3:

. =.035+4.82 B._3/(1—.72B)+(1—.54B)a 5.1

with the notations e, and 8, be the first difference of the series.

Table 5 shows the.R and S arrays when (-1)™v,, is replaced by the two stage least
squares estimates (-1)™v,, obtained from the first difference series.

In observing arrays such as presented in Table 5 several approaches can be taken to
identify the pattern presented. We believe the best approach is to inspect the S-arrays
first. Choose the case which appears most distinctive, and identifiy r as the column having
the constant behavior followed by a highly variable column. This behavior is clear in
Table 5 where obviously r=1. That same table also makes clear that my=b+s—r+1=
3 so that b+s=3. Next investigate the R-arrays. Recall that (-1)™v,, appears in Column

1 of the arrays. This gives b=3, and hence s=0.

Table 5. R and S arrays at fm(—l)"‘\‘;m

R:(m) Rz(m) Ras(m) m So(m) Si(m) Sz(m)
0.0000 0.0000 0.0000 0 1.0000 U 9)
0.0000 0.0000 -4.7307 i 1.0000 U .
0.0000 4.7307 0.1082 2 1.0000 -® 1.7893
-4.7307 -0.1264 -0.2150 3 1.0000 -1.7428 0.2578
3.5138 -0.1070 0.2099 4 1.0000 -1.6801 0.7760
-2.3897 -0.0597 0.1395 5 1.0000 -1.7553 -1.9531
1.8049 -0.1283 -1.0778 6 1.0000 -1.6973 0.1698
-1.2585 -0.1167 -0.0514 7 1.0000 -1.8703 1.7386
1.0954 0.0047 -0.0579 8 1.0000 -1.6711 -17.2341
-0.7351 0.0536 0.0052 9 1.0000 -1.6604 1.0414
0.4854 0.0233 0.0340 10 1.0000 -1.8439 1.2751
-0.4097 0.0062 0.0329 11 1.0000 -1.7388 8.2317
0.3027 -0.0227 12 1.0000 -1.7746 -3.7367
-0.2344 -0.0662 13 1.0000 -1.9461

* Note U denotes an undefined number.

% % Note rectangulars in R and S arrays highlight the zero and the constant stretches, respectively.
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As a result, the model of order(r=1, s=0) and transfort delays b=3, identified by the R

and S arrays approach, is consistent with that published.

Example 3. In this example we use the gas furnace data considered in Box and
Jenkins(1976) and labeled “Series J”. The data consists of 296 pairs of data points referred
to as input gas rate(X;) and CO, in outlet gas(Y;). The published fitted model is the

stationary model of order (r =1, s=2) and transfort delays b=3:

Y. =-(53+.37B+.51B%) X.,/(1—.57B)+a,;/(1—-1.53B+.63B?). (5.2)

Table 6 shows the corresponding R and S arrays at fn =(-1)"Vy.

The first column in the R-arrays gives the two stage least squares estimates of (-1)™V,
with b=3. Again the S-arrays clearly show that r=1 and s=2. Note that both Column 2
and 3 of the S-arrays behave exactly as would be expected for a transfer function model
of order (r=1, s=2). That is, Column 2 and Column 3 have the characteristic “constant
behavior” and highly variable sequence respectively from my=b+s—r+1=5. Column 2 of

the R-arrays also clearly gives r=1. Thus again the results from the R and S arrays

Table 6. R and S arrays at -1V

Ri(m) Rz(m) Ra(m) m Sg(m) Si(m) Sz(m)
0.0000 0.0000 0.0000 0 1.0000 8) 8]
0.0000 0.0000 0.5396 1 1.0000 U - o
0.0000 -0.5396 0.2213 2 1.0000 © 2.5619
0.5396 0.0398 0.2352 3 1.0000 -2.3860 16.8083
-0.7478 -0.2564 0.0674 4 1.0000 -2.2590 1.3916
0.9415 -0.0393 0.0213 5 1.0000 -1.6437 -0.9934
-0.6061 -0.0617 0.4964 6 1.0000 -1.7504 -:6502
0.4548 -0.0881 -0.0334 7 1.000C -1.5131 3.0111
-0.2333 0.0392 0.6556 8 1.0000 -2.0847 0.4401
0.2531 0.0320 0.1164 9 1.0000 -2.4073 9.4515
-0.3562 -0.1061 0.1116 10 1.0000 -2.1910 -0.9200
0.4242 -0.1655 0.9586 11 1.0000 -1.6431 -0.2995
-0.2728 -0.1843 12 1.0000 -2.6398 1.3238
0.4474 -0.0271 13 1.0000 -1.5525

* Note U denotes an undefined number.
* % Note rectangulars in R and S arrays highlight the zero and the constant stretches, respectively.
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approach are the same as those published.

6. Concluding Remarks

In this paper we have presented theoretical R and S arrays associated with the single
input transfer function model. The practical implementation pertaining to the identifica-
tion of the noise corrupted model via the R and S arrays is also discussed. Limited
demonstration by two published series shows that the suggested approach is practicable
and readily observable tool for identifying the order of the single input transfer function
model.

This approach can be applied to the identification of multiple input transfer function
models. Unfortunately, we have not found published multiple input samples for demon-
stration purpose. This needs a simulation study.

The generalization of the theorems of Section 3 for model identification to the nonstati-
onary process is worthy to be considered. This will show how a transformation to
stationarity may be obtained whenever the process is nonstationary due to roots, real or

complex, on or within the unit circle.
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