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Abstract—In order to describe the effects of large-scale molecular structure on viscoelastic properties, the
equivalent primitive chain model previously suggested for linear-linear blends is extended to star-containing
blends especially in concentrated region where the entanglements between higher relaxation-time components
are prominent. Taking into account the significance of the tube renewal by the local constraint release for
the relaxation process of a model chain with higher relaxation time, consider, the inhomogeneous binary blend
composed of different chain stuctures on large-scale but chemically identical species as a homogeneous blend
consisted of same structures with different effective molecular sizes.
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1. Introduction

General purpose polymers universally consist
of chains with different lengths and can include
various forms of branched structures which rema-
rkably control their processability. To understand
the structural dependence of rheological proper-
ties, many investigations have been done for the
effect of molecular parameters, i.e., molecular wei-
ght (MW), molecular weight distribution (MWD),
and long chain branching, by using model poly-
mers with narrow MWD’s and well-defined bran-
ched samples instead of structurally more compli-
cated commercial polymers. The simplest bran-
ched molecule is a star polymer with f-arms coup-
led together at a single branch point. Such star-
branched model polymers show strikingly diffe-
rent behaviors from linear molecules in various
rheological properties [1-5]:

The star polymer has the lower value of zero-
shear viscosity 1, than the linear polymer of the
same molecular weight in low range of molecular
weights. As molecular weights increases, 1, for
the star is enhanced rapidly relative to the linear.

The recoverable compliance J,° for branched po-
lymers is directly proportional to the molecular
weight over the experimentally accessible range,
while for highly entangled linear poymer ] is in-
dependent of molecular weight.

The concentration dependence of linear viscoe-
lastic properties in small molecular solvents has
been studied for the branched as well as for the
linear polymers. At the concentrated regime, the
concentration and molecular weight dependences
can be summarized as follows:

T]o°¢ (CM)3'4, Jeo(x: 1/GN0<X: 1/C2.0~2.3 Moy JeoGNo
=@~3W @

For star-branched polymers,

n,c(cM)exp(cM), Jocc MY, Gprocc?,
J°GproccM @

where d is a constant, ¢ concentration, and M
molecular weight of the sample polymer. The pla-
teau modulus Gy’ is commonly expressed in terms
of the apparent average molecular weight M, bet-
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ween two successive entanglement couplings [1].
The Gy® or M, for star polymers has a larger un-
certainty rather than linear polymers, especially
for those of low molecular weight, but in the case
of large molecular weight the Gy’ is independent
of the branch structure and virtually indentical
with that for the linear polymers [3].

During the last few years notable advances have
been made in understanding the rheological pro-
perties of highly entangled linear polymers using
de Gennes’ reptation idea [6]. But long branches
would be expected to restrain highly such snake-
like motion of the chain. De Gennes [7] suggested
that translational diffusion of the star could take
place only when a branch retraced without cros-
sing any of the obstacles to the branch point.
More recently, Bartels and his coworkers [8]
have shown that, in contrast to monodisperse li-
near polymes which relaxes through mainly repta-
tion, the relaxation of monodisperse stars are so-
mewhat dominated by constraint release mecha-
nism in addition to the retraction process.

Binary mixtures of each monodisperse compo-
nent have been used in order to elucidate the
polydispersity effect on viscoelastic properties. for
linear polymers, various mixing rules have been
proposed both theoretically and experimentally on
the basis of the reptation and the tube renewal
due to constraint release [9-14]. On the other
hand, when the long branch are mixed with linear
polymers the relaxation processes become more
complicated than linear-linear system because of
structural nonhomogeneity. Recently, Struglinski
and his coworkers [15] have investigated the di-
versity effects of binary mixtures consisted of li-
near and 3-arm star polybutadiene, four linear-star
and one star-star. In their work, storage and loss
moduli were measured over a wide range of fre-
quencies and the compositional dependence of n,
and J,” were analyzed by an experimental cons-
tant-architecture mixing rule. But the theoretical
description for the star containg blends may be
a very difficult problem. We have not found an
unified theory for the star containing blends. For
this reason, studies on the dynamics of the dyna-
mics of the blends of branched polymers and li-
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near polymers may give more direct information
on the role of each polymer in the blended state.

In this paper, we propose a simple blending
law based on tube models for mixtures consisted
of different chain architectures such as linear-li-
near, linear-star, and star-star blends it is expec-
ted that the relaxation process of the star is very
complex. So we focus our interest on the interac-
tion between different chains disregarding the co-
nstraint release effect in each monodisperse state.

2. Theoretical background

In the tube model, the relaxation of stress follo-
wing a step strain is affected by some modes of
molecular dynamics [16]. During the first stage,
the entanglement points are supposed to behave
as strong crosslinks allowing only a wriggling mo-
tion of the monomer units in the transverse direc-
tion to the primitive chain segment. During the
stage of equilibration across slip-links, the relaxa-
tion process is a longitudinal reequilibration of
monomer density between parts of the chain
which have been differently extended or compres-
sed. Some authors [17, 18] suggested that the cu-
rvilinear monomer density along the chain contour
could be equilibrated by monomer slips through
the entanglement links. These relaxation proces-
ses on a short time scale are nearly independent
of the chain structures, but in the terminal region
associated with chain orientations imposed by the
distorted tube conformations, the relaxation pro-
cess is strongly dependent on polymer structure.

2.1 Monodisperse Linear Polymers

Even after the primitive chain recovers its
equilibrium arc length, the conformation of the
primitive chain is still in a non-equilibrium state.
The chain disengages from the deformed tube by
the reptation, i.e., the crawling motion of the ran-
dom coil chain along its own contour through hi-
ghly entangled surrounding chains. Assuming the
lifetimes of constraints that confine the chain are
long enough and the stored energy is distributed
uniformly along the chains on average, the stress
relaxation function Go(t) for monodisperse linear
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polymer system is proportional to the abandon-
ment of primitive path steps [19]:

G /(t)=Gy"u(t; T 3)
with
8 2 o
WETH= 2 == exp(~tp¥/Ty) @
p.odd n p

M 3
Ts= K ( Ef) (5)

_ észez
K= kT n*M,? ©

where & denotes the friction coefficient associated
with each statistical segment (Kuhn’s segment) of
the length b, k the Boltzman constant, T the tem-
perature, and N, is the number of Kuhn’s segme-
nts per one step of the primitive path. It is notable
that the coefficient K is independent of MW and
dependent on temperature. M, represents the mo-
lecular weight of the linear polymer. The plateau
modulus Gy is given by

4 pRT
SM,

where p is the density of a polymer and R is
the universal gas constant.

—

™

2.2 Monodisperse Star-branched Polymers

The polymer considered here is a simple and
symmetric star-branched polymer molecule with
f-arms of equal length. We designate the MW of
star molecule as M, and the MW of one arm as
M.(=M,/f). For such nonlinear molecule the rela-
xation process is dominated by the retraction
along its own contour [20-21]. It is assumed as
in the system of linear polymers that each arm
of the star is composed of N, primitive steps and
each step contains N, statistical Kuhn’s segments,
which are connected by bonds of mean length b
and have friction coefficient &, per segment. It is
also assumed that the monomeric friction coeffi-
cient & for branched molecules is equal to that
for linear molecules. Due to the branching, the
central segment is considered not to move along
the tube in the sense of time scale.

The Korean J. of Rheology, Vol. 2, No. 2, 1990
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Pearson and Helfand [21], treating the arm re-
traction as a dynamic process in a potential well
similar to that proposed by Doi and Kuzuu [20],
obtained a longest relaxation time for the arm:

Tb - TANaslzeXp(BNﬂ) (8)

where B is a constant and T, represents the ma-
ximum Rouse relaxation time for a single subunit
of N, monomer as

A=

EL'N T\ yyn e onro

2BKT ( B )1/2=2Kn*M, )
The last term of eq. (9) can be obtained from
eq. (6) by giving $=0.6 which is another parame-
ter in addition to & and M..

They estimated the fraction py(t;T,°) of the tube
not visited by the end of arm chain having N,
segments in the form

C—

(1-=8}] dg (10)

wt;T) = [jexp [—

For a simple shear strain y which is small
enough to evoke only a linear response, the rela-
xation modulus Gy°(t) of branched polymer in pure
state can be written as

G ) =G 't T) an

which is obtained by assuming that the remaining
stress at time t is proportional to the average le-
ngth of the tube unreleased. The plateau modulus
for star polymer is equal to that for the linear
molecule as elucidated experimentally.

3. Blending laws for mixtures

In mixtures with different chain architectures,
linear-linear (L-L), linear-star (L-S or S-L), and
star-star (S-S) blends, let 2-chain and 1-chain rep-
resent the chains (in the case of star polymer the
chain designates one arm chain) with longer rela-
xation time and shorter one in their pure states,
respectively. Both T, (or Ty) and T, (or Ty) in
a blenc.d state can be related with their pure
state values, T,° (or Ty’ and Tu° (or Ty), and
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the volume fraction ¢. of the 2-chain by describing
how the relaxation process of model chain is affe-
cted by is surrounding chains. OQur primary inte-
rest is the interpretation of the intermolecular in-
teractions between 1-chain and 2-chain by intro-
ducing the constraint release mechanism. It is as-
sumed that each pure component relaxes only by
reptation (or retraction) and does not experience
the constraint release of the surrounding chains
with the same architecture during its relaxation.

3.1 Linear-Linear Blends

According to the tube model theories, the MWD
effects are well described by constraint release
mechanism in addition to reptation [9-14]. Kim
and Chung [14] have extended the tube model
to explain the terminal viscoelastic properties of
binary blends in the highly entangled state of two
linear monodisperse polymers. In the L-L blend
the short chain, 1-chain, relaxes mainly by repta-
tion, whereas the long chain, 2-chain, shows so-
mewhat complex behavior:after tube-forming short
chains around 2-chain are released, the tube enla-
rgement and thereafter the long-chain disengages
the enlarged tube by reptation. The relaxation of
2-chain by both reptation and tube renewal is vi-
sualized as the relaxation by pure reptation an
equivalent primitive chain. The details about the
effects of chain length distribution was already
reported [14].

3.2 Star-containing Blends

In the binary blends, linear-star and star-star
blends as well as linear-linear blends, the const-
raint release is an important mechanism. the li-
near-star blends may be divided into two kinds
of blends: the relaxation time of the star compo-
nent is (a) greater than that of the linear compo-
nent, and (b) smaller than that of the linear com-
ponent. For the sake of convenience, the former
case will be hereafter called the “L-S blends” and
the latter case called the “S-L blend”. The second
letter followed the dash designates the component
with longer relaxation time.

Firstly, in the system of case (a) the tube rene-
wal of a branched molecule in a linear matrix
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has been explored theoretically by Klein [12] and
studied experimentally by Roovers [22] at the
dilute concentration of a star polybutadiene in the
low molecular weight linear ones. But their stu-
dies have been limited in the low concentration
region with no branch-branch interaction, so that
we propose relaxation mechanisms and blending
laws for binary blends where the branch-branch
interactions, i.e., 2-2 entanglements, become noti-
ceable.

If a linear chain selected as a labeled chain
(1-chain) in the L-S blend where the relaxation
time of an arm of the star component is greater
than that of the star component is greater than
that of the linear component, the constraints, the
constraints provided by neighboring linear and
branch chains are not changed until T (~n%/12-T,
1), the average lifetime of slip-links imposed by
a tube-forming linear chains. Therefore, the linear
chain relaxes by reptation along with terminal re-

wa;
d t2To

Fig. 1. Schematic illustration of the relaxation pro-
cess of 2-chain with higher relaxation time:
(@) Original 2-chain is shown in a straighte-
ned form; (b) Primitive 2-chain begins to be
subjected to the tube renewal at t=T, (de-
noted by open triangle); (c) At t=T, tube
renewal between two type-2 slip-links is com-
pleted; (d) The model chain can be visualized
as the equivalent 2-chain and equivalent sur-
vived tube (thin line).
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laxation time T, by eq. (5).

On the other hand, an arm of a star polymer
labeled as a 2-chain relaxes by retraction alone
until T, because there is no change in the topo-
logy of constraints. The arm 2-chain evaporates
its original conformation by retracting along its
axis pushing out unentangled loops into the sur-
rounding matrix as shown in Fig. 1b.

Then at the time T, the arm chain begins to
be subjected to the rearrangements of the const-
raints by tube-forming linear chains. For t>Teor
the chain renews its conformation mainly by the
local tube renewal related with the slip-links for-
med by I-chains. Whereas, most of the branch-
type slip-links keep their original locations until
one end of the model chain passes through them
(filled circles of Fig. 1c).

When T, is supposed to be a tube renewal time
between two branch-type slip-links, the time (T,
—Tea) corresponds to the longest relaxation time
of the Rouse-like local tube segment as [9-10]

To - Tcl = KpNt2Tcl (12)

The value of proportionality constant K, less than
unity is still disputable and will be discussed later.
The number of primitive steps between two bra-
nch-type slip-links, N, is given by [14]

Ni=Nao/ [Nz~ Do+ 1] 13)

where N, is the number of primitive steps per
arm 2-chain.

After such a tube renewal between two branch
slip-links is completed the linear 1-chains behave
as somewhat solvent-like molecules and the vir-
tual tube diameter is expanded from a to a,. It
is expected for the branch chain to relax by retra-
ction alone in the enlarged tube for the time lar-
ger than T,.

The arm chain at T, can be envisaged as a ho-
mogenized primitive chain constrained effectively
only by some imaginary fixed slip-links equally
separated by the distance ay. This remodeled
chain is called as an “equivalent primitive chain”,
which is denoted by thick line in Fig. 1d. The
equivalent average molecular weight M,y between
two slip-links with the distance ay is expressed

The Korean J. of Rheology, Vol. 2, No. 2, 1990
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as
M,>=M.oy" (14)

where v is a parameter that represents the degree
of departure from the pure solvent-like depende-
nce varying from unity to zero. The M,y is dedu-
ced from the relation between the entanglement
spacing and the concentration of polymers in low
molecular solvent.

The index v must be a parameter related to
each effective molecular size in the binary mix-
ture. Thus in order to find the value of v, we
regard the linear 1-chain as a branch-type 1-chain
of the star polymer with the same characteristic
lifetime as that of linear polymer. That is, the
structurally nonhomegeneous binary mixture is
considered as a constant-architecture mixture to-
ward higher relaxation-time component. In gene-
ral, the average lifetime of the tube-forming type-
1 constraints on the 2-chain is defined by [10]

T,= [ dt (15)

where u(t) means the fraction of primitive steps
which are still occupied at time t and is given
by eq. (4) for linear polymers and by eq. (10) for
branched ones. Let us consider the linear const-
raint as a branched constraint with same lifetime:
i (T)*

T(Il =

= 16
12 2BN,* (16)

where the superscript* means the effective 1-
chain having the same structure with 2-chain. The

1* means the number of primitive steps of a
branch-equivalent constraint. When N,* approa-
ches N,,, the 2-chain hardly experiences the local
tube renewal before it completely abondons origi-
nal memory. In another extreme case for Nu,i*/Ng;
—0, the short chain behaves as solvent-like one.
Apparently, the index v in eq. (14) must be a fun-
ction of N, */N,, satisfying two limiting conditions
that varies from unity at N,”*/N,=0 to zero at
Nu*/N=1.

On the other hands, the fraction of the equiva-
lent tube survived at t>T, is equal to the fraction
for a certain purely retracting chain with the arm
molecular weight M,,, entanglement spacing M.,

frdsh, A2d A2 E, 1990
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and number of primitive steps Ng=Mu/Meo.
Thus the disengaement time Ty, can be written
as

Tro= 02" Tr'exp{ — BNu(1— 2"} 17

Therefore, the fraction of the equivalent survived
tube maintaining the original conformation, u, [t;
Tw(®)], over all range of time is written as

t
. = ! -
Ub[thh?(t)] .fo eXp[ Tha(t)

where Np(t) [=M,/Mo(t)] is the number of
equivalent primitive steps. Here M.(t) and Tpu(t)
are equal to M, and T,y for t>T., respectively.
For t>T, they are given as M,y and T, in egs.
(14) and (17), respectively. During the local tube
renewal process, T,,<t< T, it is roughly expected
for M,y(t) to increase linearly from its lower limit
M, to upper limit M,» and for Ts(t) to be equiva-
lent to the relaxation time of an arm chain with
the corresponding transient Mx(t) and N(t).

The time evolution of the chain parameters of
the equivalent 2-chain for each case of blends is
summarized in Table L

On the basis of the blending law in which every
molecule contributes independently to the stress
[23], various viscoelastic properties of binary ble-
nds can be predicted. For example, the stress re-
laxation function of binary blends, Gg(t), is calcu-
lated as the sum of the respective contribution
of blend components. The Gi(t) attributed to i-co-
mponent chains in the blend is written as

Git) = 4; nkTNAD 10 (19)

where n; is the number of 1-chains in the blend,
and p(t) is equal to w(t;T,) for linear 1-chain
and y, [t;Tie(t)] for arm 2-chain. thus
M,
Mez(t)

ub{t; To(®}] (20)

which is obtained by replacing 4/5nkTNKTN,(t)
= 0;Gv"M./M.i(1).

Gu)=Gy [o1t; Ta) + 02
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Table 1. Time Evolution of Chain Parameters of The Equivalent 2-chain
Time
Parameters
<t T <t<x, t<z,
Molecular weight M, M, M,
M. (7, — ) + Mpp(t— 1) .
Entanlement spacing M, Mxp(t) = rp ! + M =M,V
To Tl

Primitive step length a ap(t) =a[ My (t)/M,JV2 ay=apy V2
Number of primitive paths N, No(t) =NaMy/M,o(t) Ny =Nagp¥

L-L{or S-L) blend a2’ Tp(t) = szgMp/Mz(t) T2 =02 T2’

L-S(or S-S) blend Tho? Tha(t) Trz=02""2exp[ PN,2(1~0¥)]

Fraction of stress remained ;

¢ M,
L-L(or S-L) blend Fao(t s tgy i T?) Bow(t + tg) + [t Tp(t)] Bow(t 3 tge) + Cy ——wlt s Tyl
M,(t) Mz
L-S(or S-S) blend Fp(t : Tp?) Folt s Tpa(t)] : Fplt s Tyol
M('2<t) 02

*At t<t. the equivalent 2-chain has the same chain parameters with the original 2-chain.

T1 and t, are equal to T, and T, respectively, if the

1-chain is the branch.

"Ni and N; in the index v are given as their effective values corresponding to the blend.

Secondly, in the case (b) of the S-L blend with
the star component of smaller relaxation time than
linear component, where the 1-chain is an arm
chain which relaxes by retraction only and the
2-chain is the linear chain which experiences the
local constraint release by the branch 1-chains,
the linear component of the same relaxation time
can be substituted for the star component. The
relaxation process of the linear 2-chain in the S-
L blend is equivalent to that in the L-L blend
replacing T, with

Tb 1”

Ty= —2—
' 2'31\1(11

@1
Thus the relaxation modulus of this blend is rep-
resented by

M('
MPZ(t)

Gu(t) = Gy [oips(t; T+ o W

{t; Tan(t)} ] 22)

where all parameters for the linear 2-chain in the
S-L blend are the same with those for the 2-chain
in the L-L blend as noted in Table I That is to
say, the binary blend consisted of different mole-
cular structures on large-scale is considered as
the homogeneous binary composed of same struc-

tures with different chain lengths.

Finally, in the binary blends composed of two
monodisperese star components with different
molencular weights, the branch chain in lower
molecular weight star relaxes only by retraction
with terminal relaxation time T, . The relaxation
process of branch 2-chain is equivalent to that
in the L-S blend replacing T,; in eq. (21). Then
the relaxation function Gu(t) of the S-S blend can
be written as

M,

Ge)=Gx Low(t;Ti") + ¢ » Wzt)

Ma

[ Tw(t)}] (23)

Hitherto, we visualized the relaxations of each
component in binary mixtures as pure disentang-
lement processes with time-dependent entangle-
ment network in order to describe the effect of
chain architectures on viscoelasticity of polymers,
which is called equivalent primitive chain model.
From these relaxation mechanisms, the blending
laws were proposed for several mixtures. We will
discuss the qualitative features between the
theory and some experimental data from litera-
ture.

The Korean J. of Rheology, Vol. 2, No. 2, 1990
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4. Discussion

We have extended the local constraint release
mechanism from linear-linear blends to linear-star
and star-star blends. The 2-chain with the longer
relaxation time in the binary blend relaxes by th-
ree successive mechanisms, i.e., reptation (or ret-
raction), local tube renewal between two slip-links
formed by 2-chains, and finally reptation (or retra-
ction) again. After 1-chain relaxed by reptation
(or retraction) alone, the 1-chains behave like sol-
vent and thus the effective entanglement spacing
of 2-chain is aggrandized.

Klein [9] and Grassley [10] have considered
the tube renewal as a Rouse-like random jumping
motion of a tube constraints on the primitive pa-
ths. Extending the treatments by those to the cur-
rent case, the local tube segment is pictured as
a virtual Rouse chain. The 2-chain experiences
the constraint release by surrounding 1-chains
and 2-chains, i.e., the short-range or local tube
renewal of N, local tube segment by neighboring
1-chains and the long-range tube renewal of a si-
ngle virtual Rouse chain with Ny¢;' (=M/M.z)
submolecules where N, means the number of pri-
mitive steps of the effective 2-chain. The N, is
equal to Ny, for linear 2-chain or N, for arm 2-
chain. Attention given here is restricted to such
a local tube renewal between two adjacent entang-
lements with 2-chains which are assumed to be
distributed uniformiy. As shown in eq. (12), the
importance of local tube renewal is alleviated with
increasing ¢. while the long-range tube renewal
time increase with ¢,.

In binary blends, the relaxation of 1-chain is
mainly dominated by reptation (or retraction) in-
dependent of its volume (or weight) fraction, while
the behavior of 2-chain possibly shows different
aspects with its composition. That is, in infinite
dilute region where the 2-chain is isolated in the
1-chain matrix, the 2-chain renews its conforma-
tion only by tube renewal with the equivalent
Rouse chain with N, submolecules after the rela-
xation of 1-chains. As ¢, increases to a concentra-
ted region where the entanglements among 2-
chains are prominent the short-range tube rene-

g, A2 A 23, 1990

wal can occur between two entanglements with
2-2 couplings immediately after the occurrence of
constraint release. The rheological properties are
very important in this concentrated region. Thus
in order to make the model applicable even in
dilute region ¢.<¢,, where the interactions among
the 2-chains are not effective, we can identify the
behavior of the 2-chain at ¢,<¢. with the behavior
at ¢. where the entanglements among 2-chains
begin. The critical 2-chain content dependent on
the effective molecular sizes of each component
chain can be scaled as [14]

o= [ % ™ (24)
2

where Ni* represents the number of primitive
steps of effective 1-chain. This criterion for the
onset of entanglement between 2-chains is univer-
sal for all kinds of blends discussed currently.

On the other hands, in addition to reptation
the path length fluctuation affects the stress rela-
xation for monodisperse linear polymers. It has
been considered that the discrepancy of n, for
linear polymers between experimental observa-
tions, m, < M®** and the reptational predication,
M, < M3, is mainly caused by the thermal fluctua-
tion of the primitive chains. We can adopt the
Lin’s treatment [10] in order to include the fluc-
tuation effect in the present equivalent chain mo-
del for binary blends. The contour length fluctua-
tion effect reduces the terminal relaxation time
of the linear component in pure state.

w=Ts 1—-1/yNYy (25)

4.1 Linear-Linear Blends

Effects of chain size distribution on the viscoe-
lastic properties of polydisperse linear polymers
are well represented by the binary mixtures con-
sisted of two nearly monodisperse components
[11, 24-25]. Experimental observation for the re-
laxation modulus curves of binary blends show
interesting differences from the nearly monodis-
perse fractions depending on their blending ratio,
M./M,. The experimental work for binary blends
are divided into two classes with the value of
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C*=TaN?/To’ =M /MoM2. If C*>1, the longest
relaxation time of 2-chain is independent of ¢,
as was noted by Struglinski and Graessley [11].
Otherwise, the constraint release effects become
very important. In this case, the conformation of
2-chain reaches a local equilibrium state with en-
larged tube diameter after tube-forming short
chains released and therafter the 2-chain reptates
the tube dilated. The longest relaxation time de-
pends on ¢,. Fig. 2a shows the shape of the rela-
xation modulus curve, as an example, of a blend
consisting of two monodisperse linear polymers.
The qualitative feature is matched by the several
experimental data on polystyrene blends. The se-
cond plateau region appears after local tube rene-
wal was completed. Then the level of intermediate
plateau is given by the value of Gy /Gy'=d,!""
which varies with its blend ratio from ¢, at M,/M,
=1 to ¢ at M;/M,=0. The dependence of the

G(t) / GNo
N

1.0

¢,

1+Vv
¢,

> {ime

(b)
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index v on the blend ratio has been well covered
by first-order approximation for explaining viscoe-
lastic properties [14].

4.2 Star-Containing Blends

In earlier chapter, we regarded the 1-compo-
nent in a mixture consisted of different chain st-
ructures as an effective 1-component having same
architecture with 2-component. The effective mo-
lecular weight is not affected by its composition
because the relaxation of 1-chains have the same
behavior in its pure state. Struglinski and his co-
workers [15] have obtained the star-equivalent
molecular weight for the linear polymer from 7,
by using the relationship for the star polymers
and succeeded obtaining a star polymer mixing
rule. In Fig. 3, the effective number of primitive
steps of 1-chain including the contour length fluc-
tuation for linear component are compared with

@

Fig. 2. Relaxation modulus for several types of blends; (a) L-L blend, (b) S-L blend, (c) L-S blend, and (d)
S-S blend. The dashed lines represent moduli for each monodisperse component in blends.

The Korean J. of Rheology, Vol. 2, No. 2, 1990



54 AHA - A
20
2. 0]
Q
L
&5 "
) O
St
2 10
=)
3
=
[ - O
i
-5
3
=
= o 1
0 50 100
N,

Fig. 3. Number of primitive steps of effective 1-chain
having same structure with branched 2-chain
in L-S blends.

the empared with the empirical calcuation by
them which is denoted by open circles. As shown
in this figure, their qualitative features are subs-
tantially the same. That is, the effective molecular
weight increases logarithmically as the molecular
weight of linear 1-chain increases.

The rheological properties of the star-containing
blends are well characterized by shear relaxation
modulus which is shown in Fig.2b, ¢, d. In the
nearly monodisperse star, the longest relaxation
times cannot be defined from experimental modu-
lus curves owing to the broad relaxation spectra
of star components. The relaxation of stars, in co-
ntrast to that of monodisperse linear polymers,
has not a clear plateau, which may be caused by
mainly retraction, i.e., chain ends fluctuation of
kind [20-21], and partly constraint release [8].
However, we have obtained the blending laws of
rheological properties by assuming that the const-
raint release is not effective in pure states. This
assumption can cause an overestimation of the
blending effect in the star-containing blends. But
it is expected that the interaction between two
different chains is well explained by the present
model.

For t<T,, all chains participate in entangle-
ment network and thus the stress relaxation takes
place only by reptation or retraction. For transient
region T,<t<T, the entanglement spacing is en-
larged to average spacing between 2-2 entangle-
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Fig. 4. Variations of weight-average relaxation time

with volume fraction of 2-components for star
containing blends, three L-S and one S-S
blend. In all cases the higher molecules are
the star polymer with molecular weight 127,
000. The lower molecules in the mixtures are
linear polymers with molecular weight 36,800
(©), weight 100,000 (D), weight 168,000 (»),
and one star polymer having molecular wei-
ght 74,600 ().

ments. If the 1-chain is a branch type as shown
in Fig. 2b and d, the T;;” may be greater or smal-
ler than the T.. In these systems, we designate
the stress relaxation curve as a simple line al-
though it is somewhat complicate. Finally for t
>>T,, the contribution of 1-chain to stress becomes
very weak. The stress relaxation occurs almostly
by 2-chains with the expanded entanglement spa-
cing.

It is known that the longest relaxation time for
a Rouse chain fixed at a point is four times larger
than that for a free Rouse chain of the same le-
ngth [10]. Thus the proportionality constant K,
in eq. (12) can be replaced by 1/6 for linear virtual
Rouse chain and by 4/6 for branched one. And
also, the product of viscosity and compliance, 1,J.",
defines a characteristic time of the mixture wei-
ghted toward the longest times, i.e., weight ave-
rage relaxation time of the terminal region which
may be a function of ¢, and blend ratio. Fig. 4
shows the variation of In (,],") with volume frac-
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tion of 2-chain for star containing blend, three
linear-star and one star-star. In this figure we ar-
gue, using data from Struglinski and his cowor-
kers, that the weight average relaxation times are
exponentially dependent on ¢, which is qualitati-
vely predicated by eq. (17). As ¢, increases, the
2-2 entanglements increase and thus the fraction
of the 2-chain experiencing constraint release de-
creases. Owing to the increase of the interaction
among 2-chains, the terminal relaxation time of
2-chain increases with ¢.. And also the ¢,-depen-
dence of the relaxation time weakens as the blend
ratio Ma/M* increases, which is deeply relasted
to the value of the index v in eq. (17).

Additionally, the criterion for the significance
of tube enlargement in linear-linear blends which
was proposed by Doi, et al. can be extended to
the star containing blends with the value of C*
=TaN,?*/ Ty’ The present theory indicates that
the relaxation of 2-chain is accelerated by the re-
lease of constraint formed by neighboring 1-
chains, which is realized when C*<1.

5. Concluding remarks

In order to account for the side-chain effects
on the dynamical behavior and rheological of pol-
ymers, we considered the tube enlargement due
to local constraint release and remodeled the re-
laxation mechanism by adopting the idea of dise-
ngagement by pure reptation (or retraction) of an
equivalent primitive chain after the completion of
the tube renewal.

Here we ignored the constraint relaxation pro-
cess of a model chain. In monodisperse polymer
system consisted of all same chains the overall
lifetime T, of tube for a model chain is given by
T.=T, for linear system and given by T.=T,/N,
for an arm chain in star polymer system and thus
the rate of constraint release is enhanced by a
factor N, for the star. Hence it is understood that
the effect of constraint release in monodisperse
state is more important in branched system than
in linear system. In blended states, the interaction
between 1-chain and 2-chain is more dominant
than the interaction between same chains. Thus
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it is expected that the present theory captures
the essential features for relaxation process of the
star containing blends.
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