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Introduction

Film blowing process is used for the manufac-
ture of a thin sheet or film of a thermoplastic
material (e.g. polyethylene, polypropylene, polysty-
rene) from molten polymer supplied under pres-
sue by a screw extruder. The polymer melt is
forced through an annular die and the tubular
film so formed is thinned both by blowing and
axial drawing. The tube is formed into a cloed
bubble by flattening it when it is cooled enough
to avoid blocking (the tendency of the film to stick
to itself) and then the flattened film is wound
onto takeup rolls. The axial tension is provided
by the driven nip rolls which close the bubble
at the top (the process is usually run vertically
with the die at the bottom). The blowing is caused
by manintaining an air pressure slightly above at-
mospheric pressure inside the bubble and this
causes the increase of the parison radius and st-
retching of the film in a circumferential direction.
When the bubble reaches at freezing line, the pa-
rison gets a constant radius. Fig. 1 shematically
illustrates the process.

The development of molecular orientation and
consequently the physical and mechanical proper-
ties (e.g. tensile strength, tear strength, gas per-

meabliity, clarity, resistance to crazing) are greatly
influenced by deformation and thermal histories
of the material. From the processing point of view,
the tubular film blowing process has been gaining
importance in industry because it provides bi-
axially oriented thin film via single step.

The film blowing process has been studied from
many different points of view. Intensive efforts
were invested in the film blowing process simula-
tion. The purpose of the modeling of blwon film
process is to develop a method for procicting the
physical properties of the formed film to improve
the efficiency of resin and process development
without making blown film from literally tons of
experimental resin to determine the effect of pro-
cess parameters on film properties. In this article,
we summarize the current status of film blowing
process modeling and suggest future works.

Process Analysis

From the rheological point of view, the film blo-
wing process can be divided into three zones, a)
die extrusion region b) blowing region ¢) the re-
gion over the frost line. We briefly overview these
separately.
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A) Die Extrusion Region

The polymer melts are extruded through annu-
lar die and extrudate will be swollen (This is well
kown “extrudate swell” phenomenon) with cooling
on both inside and outside surfaces by cooling
air. Since the extrudate swell affects film dimen-
sions and accordingly all physical, rheological and
optical properties of the film, it should be included
in the analysis of film blowing process. Extrudate
swell prediction is not a simple work and it is
a real horror of peoples working in computational
fluid mechanics field due to difficulty of so-called
high Weissenberg number problem. Extrudate
swell phenomena have been intensively studied
numerically using a finite elemt mehtod. As well
known [1], the cause of extrudate swell is very
complicated. In the present problem, one now sees
four major contributions to extrudate swell, that
is,

(1) Elastic strain recovery

(2) Inelastic Newtonian swelling

(3) Inelastic thermal swelling

(4) The effect of branching and molecular wei-
ght distribution.

Needless to say, the elastic strain recovery is
the most important factor among these. With the
assumption of incompressible fluid, continuity
equation, momentum equation, energy equation
can be solved together with numerous constitutive
equations by either a finite element method
(FEM) or a finite difference method (FDM) [2].
In these days, FEM is prevalently used for extru-
date swell analysis. For Newtonian fluids or inela-
stic viscous fluids, swell prediction is relatively
easy in spite of many times of interation for the
free surface position. Inelastic thermal swelling
problem can be also easily handled. The probelm
occurs with the adoption of a constitutive equation
for the viscoelastic fluid. Lots of different consti-
tutive equations with many different numerical te-
chniques were tried to solve the extrudate swell
problem for highly elastic fluids (so called high
Weissenberg number problem) [2]. Unfortunately,
nearly all of thse constitutive equations based on
continuum mechanics could not overcome the li-
mit of high Weissenberg number or Deboah num-
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ber. This is due to the nature of constitutive
equations nonlinearity which is unavoidable. Ren-
cetly there was a report that high Weissenberg
number problem could be solved using the consti-
tutive equation originated from the molecular con-
cept (Curtiss-Bird model). This problem 1is still
on the hot plate waiting for more stable algorithm
with more sound and easily controllable constitu-
tive equation.

For annular extrudate outcoming from an annu-
lar die used in film blowing process, one more
nonlinearity exists compared to capillary or plane
extrudates, that is, it has two free surfaces which
needs more computional time. For inelastic fluids,
it does not add any difficulties at all. Annular ext-
rudate swell phenomena were investigated for
inelastic fluids andd viscoelastic fluids using FEM
[3-7]. These studies include the effect of many
different factors such as Newtionian fluids, inelas-
tic Non-Newtonian fluids, different die geometry
effect, thermal swelling with heat convection, se-
cond-order fluid, elastic fluid following Maxwell
model. Gravitational force and surface tension ef-
fects are also studied.

As mentioned above, since extrudate swell affe-
cts the final product dimension, it is quite impor-
tant in the simulation of film blowing process. The
was investigated recently be Seo and Wissler [8].
However, their study was limited to a Newtonian
fluid case. Even for a Newtonian fluid, swelling
exhibited a remarkable difference when it was in-
cluded and excluded in the simulation. Details
about this are discussed below.

B) Blowing Region

Blowing process is generally started by capping
on annular extrudate and sealing the formed bub-
ble with the nip rolls. Air is then introduced into
the bubble and nip rolls and the extruder are
increased in speed until the process requirements
are met. The polymer is stretched up to the freeze
line and then the frozen-in-strain partially relaxes
as the polymer continues to cool between the
freeze line and the nips. Freezing line is a kine-
matic constant on the film blowing process as de-
fined by Pearson and Petrie [9]. It is the point
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where the film is parallel to the center line of
the bubble, which more or less corresponds to
the obscured frost line. However, frost line posi-
tion is related with crystallization of which height
are influenced by the velocity and temperature
of the air that is applied to the exterior of the
bubble by one or more annular jets produced by
an air ring. The refractive index of the polymer
changes rapidly at the frost line (Fig. 1).
Generally blowing region is defined as the dis-
tance between the die exit and freeze line. Clegg
and Huck [10] investigated the film properties
related to key processing variables in an experi-
mental manner. Holmes et al. [11] proposed a
mathematical model for the heat tansfer process
in film blowing process while Ast [12, 13] measu-
red the temperature profiles for low density poly-
ethylene films and Predoeh! [14] considered heat
radiation effect on film blowing process. Some of
the stresses that existed in the polymer melts
were examined by Dowd [15] and the deforma-
tion caused by these stresses was measured by
Farber and Dealy [16]. The various instabilities
that manifest themselves in this process has been
documented by Han and Park [17]. From the
theoretical point of view, is seems that Alfrey [18]
was the first to set up the basis of process analy-
sis based on membrane theory. Later Pearson an-

. film
nip rollers

frost line ——}: 000

freeze line —~—\ air

/
| l I i}——air ring

die connnected to extruder

Fig. 1. Blown film line.

dPetrie [9, 19, 20] first built a rigorous mathema-
tical model to describe the process based on me-
mbrane theory even though they restricted the
treatment to isothermal Newtonian fluids. The
non-Newtonian fluid was considered later by Pet-
rie [21] who numerically obtained bubble shapes
for different Maxwell type models and extended
the calculations to a nonisothermal Newtonian
fluid [22]. Agreement between theoreticfal predi-
ctions and experimental measurement was sought
by Wagner [24] with integral type constitutive
equation (rubberlike liquid with one time cons-
tant). Wagner additionally incorporated tempera-
ture changes in the biaxial extension of the bub-
ble. Han and Park [25] applied an elongational
type equation to film blowing process. Recently
Gupta and Metzner [26] used nonisothermal vis-
coelastic constitutive equation (modified White-
Metzner equation) to superpose the fluid memory
and temperature. The application of different con-
stitutive equation and its effect on simulation are
briefly presented afterwards.

Following the classical pattern of Pearson and
Petrie [9], the film is regarded as a thin shell
in tension: the tension is supported by longitudi-
nal traction (Fz) in the bubble and by internal
air pressure (AP). Inertia, surface tension, air
drag and gravity forces can be included even
though they are generally regarded as negligible
in lab scale experiments due to the thinness of
the membrane and the speeds of typical opera-
tions, but full equations are easily derivable as
shown later. With further assumptions of no va-
riation across the film thickness and steady axisy-
mmetric flow, at least until freezing sets in, the
problem is conveniently handled using local Car-
tesian coordinates, x; in the direction of flow, x,
normal to the film, and x; in the transverse direc-
tion. The simple force balance normal to the film
(from standard membrane theory neglecting gra-
vity, inertial, surface tension and air drag) gi-
ves

AP Oon O33
—_— =, 8
H R R @

Where AP is the inflation pressure, H is the film
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thickness, R; and Rj are principal radil of curva-
ture, and o,; and oy; are principal stresses in X,
and x; directions respectively. A similar force ba-
lance in the machine direction gives.

Fi=2naHo;; cosO—n a’AP 2)

Where F, is the applied force in the machine dire-
ction, a is the radius of the cylindrical bubble,and
0 i1s the angle between the velocity vector (the
local x; direction) and the center line. We take
z as our coordinate in the machine direction and
then straight forward geometry gives,

da _
E =tan0 3)
R;=a sech Y]
Ro= —(1+(da/dz)**/(d*a/dz*) (5)

As usually assumed in free-surface flows we take
6»=0 (when surface tension is being neglected)
from which following equations are obtained

Gllztlfl_flfz 6)
onR=Th— T (7

where tf is the extra stress tensor.

The kinematics, which we shall need for the
rheological equation of state in order to obtain
, are those of elongational flow, with rate of st-
rain tensor

D=cos0 [dv/dz 0 0
0 (v/a)(da/dz) O
0 0 (v/a)(dH/dz)

®

where we write v for the velocity (in the x;-direc-
tion), and defromation tensor

C- = VZ/ Vo2 0 0
0 a’/ay? 0
0 0 H?/H,? ©)

relative to the initial state of the material (at z
=0, after allowing for the extrudate swell if nece-
ssary). For an incompressible material we have
the constraint that the trace of D is zero (in iso-
thermal flow) and more generally, allowing the
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density to vary with temperature and hence with
position in the more realistic non-isothermal si-
tuation, we have

M=2npa Hv (10)

where M is the mass flow rate which is constant
for steady flow.

A constitutive equation, to relate ™ to D or
C ! or some function of the history of these qua-
ntities makes the set of equations for the dyna-
mics. The choice of constitutive equation affects
the mathematical structure of the model. Here we
note that this has an effect on the number and
type of boundary conditions requried at die exit
(z=0). The complete model of dynamics requires
knowledge of initial values of a, H and v and the
value of 0 at the freeze-line. Incorporation of other
forces merely requires alteration of equations to
a more realitic mechanical equations.

AP;+pgH sind
_ H(on—pv)+20, N Hoss+ 20,
R, R,

(11)

Fi=2na[H(c1—pv¥)+20,] cosb—n a? AP (12)

%Iz? = 2na(T 4., + pgH/cos0) (13)
Here we have allowed for gravity (the terms invo-
lving pg), inertia (the terms involving pv). surface
tension (coefficient c,) and air drag (shear stress
T acting on the film in the negative x; direc-
tion). Completion of the model requires knowledge
of the film temperature as a function of z so that
density and the rheological properties of the poly-
mer may be correctly incorporated into the com-
putation. One crucial aspect of the freeze-line po-
sition for the geometrical and mechanical boun-
dary conditions, involves assumptions about the
freeze-line as well as the die exit region. In order
to make calculations of the temperature we need
to use the energy equation which may be writ-

ten
d(yT) 2na

Y — — q a4y Ll
M " [a(T—T,)+eon(T' —T,4] o0 (14)

where T(z) is the film temperature, vy its specific
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heat, T. the temperature of the cooling air, o the
appropriate heat transfer coefficient, & the emissi-
vity of the film of molten polymer, oz the Stefan-
Boltzmann constant and T, the ambient tempera-
ture. In writing eqn. (14), we ignore heat transfer
into the interior of the tubular bubble. Convection
inside the bubble can provide a mechanism for
additional cooling of the bubble near the die.
Equation for the temperature of the film allows
temperature-denpendent properties to be used in
the dynamic equation. The appearance of a and
0 in eqn. (14) means that the solutions of the
equations are coupled. Depending on the constitu-
tive equation, different approaches can be applied
to solve the dynamic equations. For a Newtonian
fluid, we can change the dynamic equations into
dimensionless equations. In a dimensionless form,
the model system for a Newtonian fluid consists
of two ordinary differential equation for the dime-
nsionless radius r and thickness h (Pearson and
Petrie [9] as functions of x=z/a,.)

2c(T, +BrA)r"+ (1+1'H) (T, —3Bd)r (15)
LA S R 2
. o7 n A+r"*)(T+Br®» (16)

with boundary conditions
r=1, h=1 at x=Z7Z/a,=0 a7
r'=0 at x=X=7Z/a, (18)

where Z; is the freeze-line height. Here r, h, B,
T, are dimensionless variables defined as

h= H/Ho

r=a/a,

R=A/a,

B=n a® AP/n.q
T,=T.-BR?
T.=alF.neq

in which physical parameters are defined as fol-
lows

Mo = viscosity

q=the total volumetric flow rate

AP=the pressure difference across the bub-
ble

F.=axial force applied at the freeze line

A—the maximum radius of the bubble (at the
freeze line)

Hy=the film thickness at the die (or die gap)

ap=the radius of the die

The boundary condition at X=Za, arises because
it is the condition at the freeze-line of the bubble
that control the process; when the material free-
zes, since no further deformation is possible, r’
must become zero at the freeze line. Using dime-
nsionless variables the energy equation can be
written.

Y=—rCY-Y.,+E, (Y-Y 19)

where Y=T/T, C,=2nR/MC,, a dimensionless
heat transfer coefficient, E;=¢ C,T*/C, a dimen-
sionless constant. Temperature boundary condi-
tion should be added in nonisothemal problem.
The other bounary conditions at z=o should be
changed if die swelling is considered, ie., it
should be changed as

r=r, h=h, at x=17/a, (20)

where 1, and h, are radius and thickness at the
end of the swelling region (x=z'/a,). Equations
(15), (16) and (19) can be solved empolying integ-
ration procedure such as Runge-Kutta method.
For a Newtonian fluid, the integration was carried
out from x=X (where r=R and r'=0) to x=0.
After the calculation was done till x=0 (or x=x;
for swelling case) the values of radius, thickness,
and temperature at final position were compared
and if they didn’t agree with given boundary con-
dition, then Ap, Fr and o were changed and the
calculation was repreated to obtain the optimized
values. This iteration was done using a Newton-
Raphson method as follows. Define functions fj,
f,, f; and variables x/*, x»* x3* as follows:

f1 =R*~— R_;* Xl* = Ap
fz =h*— hs* Xz*: FR
£=Y*-Y* x3*=a
where R* h* Y* are computed values and R.*,

he*, Y,* are given values at the boundary. Then
the matrix ¢ (x*) can be defined as

The Korean J. of Rheology, Vol. 2, No. 2, 1990
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o) (X*):{fl'j(x*)} 1,j=1,2,3 21
where
£,
£(x%) = % x*) @2)

Let x° be the initial starting vector. Then the co-
mputational process is to use

x*n+1:x*n_[¢ (X*”):rl f (X*") (23)

The iteration process is repeated until the desired
accuracy is achieved.

Exemplary results are presented in Fig. 2 and
Table 1. Note that this bubble has a long neck
and very sudden blow up which is not in quanti-
tative agreement with experimental measurement.
However, by taking thermal effects into account,
we can get an improved agreement between the
theoretical bubble shape and experimental measu-
rement (Petrie [22]). The case when swelling are
included was investigated by Seo and Wissler [8].
According to their results, inclusion of swelling
process produces a better agreement when pul-
ling-up ratio is low. But when pulling-up ratio is
high its effect is not so apparent. This is not be-
cause of negligible swelling effect, but due to ine-
lastic response. For Newtonian or inelastic fluids,
if pulling force is strong, the swelling happens
near die exit and then it vanishes very rapidly.

Improvement in comparison with experimental
results was achieved when non-Newtonian fluid
models were used. These require more equations
for 611, 622 and o33 for eqn. (11) and (12). Inelastic
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Fig. 2. A typical bubble shape for a Newtonian fluid.
B=02, X=10, T,=2, R=2.7 (Luo and Tan-
ner (28)).
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viscous fluid equation was used by Han and Park
[17] and Seo and Wissler [8]. Purely elastic mo-
dels such as a rubber-like elastic or Neo-Hookean
model were used in place of the Newtonian mo-
del. (Petrie [21], Wagner [24]). Difficulties were
met using purely elastic models (Pearson and Gu-
tteridge [27]). Unsatisfactory results using purely
elastic models invoke the importance of the extru-
date swell (Petrie [22]). To describe the viscoela-
stic behavior, many different constitutive equa-
tions were tried such as Leonov model (Luo and
Tanner [28] and Maxwell model (Wagner [24],
Luo and Tanner [28], Cao and Campbell [29]),
Maxwell model expressed as a rate equation (Gu-
pta [30]), Voigt model (Pearson and Gutteridge
[27]). For viscoelastic fluids, as said above, we
should have other equations to provide further
informations about the stress components in the
streamwise, circumferential and radial directions
(for an example, see Luo and Tanner’s paper [28]
for Maxwell model). Also we need boundary con-
ditions for these stress components. Numerical in-
tegration from freeze line to die, which was prefe-
rred for the Newtonian model, is highly unstable
for viscoelastic fluids (Petrie [21]). As noted by
Petrie, this is not really surprising since the pro-
cess is an integration backwards in time for a
material particle and the property of stress rela-
xation (for time increasing) gives exponential gro-
wth of stresses. Thus the integration should be
done in the direction of increasing x. Fig. 3 shows

Table 1. Newtonian Case: results for isothermal flow
(Luo and Tanner (28)

T, 20 25 3.0
R 3.562 3.9603 4.3045
H 0.0905 0.0432 0.0189
Case 1. B=0.15, X=6.0
B 0.12 0.15 0.2
R 5.0186 4.3045 3.5128
H 0.0146 0.0189 0.0236
Case 2. T,=3.0, X=6.
X 4.5 6.0 8.0
R 4.5447 4.3045 4.2053
H 0.0237 0.0189 0.0136

Case 3. B=0.15, T,=3.
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a typical result for Maxwell model and Table 2
shows some results for Maxwell model. As in the
Newtonian fluid case, the bubble shape is most
sensitive to B, the dimmensionless pressure diffe-
rence (Table 2). The effect of A, the relaxation
time, on the behavior of the film flow is to dec-
rease the blow-up ratio R=A/a, and to increase
the thickness, since A is an elastic or solid-like
parameter. For Maxwell model, numerical results
were possible only within some limited parameter
values without computational instability. Fig. 4
shows a comparison of numerical results with Gu-
pta’s experiment for polystyrene film. The agree-
ment is good. In its initial stage, blow-up ratio
decreases first and then expands. This kind of
necking phenomena could not be predicted with
inelastic fluid models. Fig. 5 shows the .comparison
of circumferential stress with Gupta's experime-
nts. Again, Maxwell model predicts the, flow beha-
viour very well. Luo and Tanner [28] also used
Leonov model. The numerical systen.\lr is highly

30

N
[&2]
T

Dimensionless Bubble
Radius, r
[~}
(=)
T

unstable when Leonov model was applied. The
fluid does not stiffen enough with increasing elo-
ngational rate to simulate the bubble shape.
According to Cain and Denn’s numerical results
[31], Maxwell fluid shows a high draw force limit,
ie, r' vanishes along the length of the bubble
with a draw force. This happenes to both isother-
mal and non-isothermal case. This limit point at
high draw force is an artifact of the Maxwell mo-
del, which treats polymer chains as Hookean spri-
ngs that can extend indefinitely. Contrary to this
inappropriate fact, network rheological models
presents more realistic extensional behaviours.

30,(mm)

25+

i
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<
T

Bubble Radius
o
T
\
\
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T

1 | i 1 | L i i

0 ) I 1
01 2 3 4 5 6 7 8 9 10 11 12
Axial Distance from Nozzle (X10 mm)

Fig. 4. Bubble shape comparison for Run 20. The
ratios of theoretical to experimental values
for pressure drops and axial forces respecti-

15+ P vely were 1.06 and 1.05. The line is calculated
/ and points () are expermental (Luo and Ta-
10 - ] ) ' nner (28)).
0 1 3 4 5
Dimensionless Distance
from Nozzle, x 2o 20 \
Fig. 3. A typical bubble shape for Maxwell model " . (
B=0.2, X=5, T.=29, R=2.79, A=0.15 (Ldo % '
and Tanner (28)). g r ‘ '
=354 g
£ 10+ o
Table 2. Isothermal results for Maxwell model (Luo 88X -~
and Tanner (28)) £ 5L /,/ e
B 0.08 0.1 § /4/// """"
R 4.79 3.31 0kt Ser IS R TR S S T
H 0.025 0.04 01 2 3 4 5 6 7 8 910 1112
T,=28, u=10, A=10, X=6. Axial Distance from Nozzle (X10 mm)
B 0.15 0.2 Fig. 5. Comparison of circumferential stresses for
R 387 2.79 Gupta’s Run 20 ---, Gupta's prediction; —-—
Tanner’s prediction, A=2.93s at 170C; —

H 0.018 0.023 \
T.=29, p=10, A=0.15, X=50

Tanner’s prediction, A=1.173s at 170C (Luo
and Tanner (28)).
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Reflecting this idea was adopted by Cain and
Denn to use Marrucci model [39]. Marucci model
adds one more differential equation to the system
for the structure variable. Even though compari-
son with experimental results is not provided,
Marucci model seems good to eliminate the uns-
tability at high draw force.

C) The Region over the Frost Line

In the film blowing process, the polymer is st-
retched up to the freeze line. After then the fro-
zen strain partially relaxes as the polymer conti-
nues to cool between the freeze line and the nip
rolls. Since the time it takes to cool the polymer
will influence the biaxial structure developement
and therefore the final physical properties of the
film, it is important to extend the simulation th-
rough and above the freeze line. This approach
was exploited by Cao and Campbell [29]. They
expected substantial changes in structure to occur
during the polymeric fluid cooling time to room
temperature. Then it is easily understandable that
a liquid-like model cannot be used to describe
the behaviour of the film above the freeze line,
since the polymer becomes solid-like. Cao and Ca-
mpbell modelled film blowing process through the
transition region. The material behaviour should
change from liquid-like to solid-like at the frost
line. They devised a mixed model which can pre-
dict the plastic-elastic transition. Including the st-
ructure memory function which has a strain har-
dening factor to explain the larger effective modu-
lus in the vicinity of the freeze line, the constitu-
tive model is cast as

At t=2n,D ify/IL>Y,/\/3 (24)
1=2G4E if\/I,>Y,/\/3 (25)

The first one is a modified Maxwell model where
T is the convective derivative as defined by Bird
et al. [40] and the second equation is a modified
Hookean model. Here

Ag= effective relation time=n,/G,;

ney= effective viscosity =n/1—(Y,;/r/3)/\/11,
where 1, is the fluid viscosity
Y= effective yield stress=Y(

FHE, A28 A 23, 1990
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Y= conventional yield stress from the Vohn-Mi-
ses yield condition (Sawer and Pae [41])

{=structre memory function (see Cao and
Campbell)

I,=the second invariant of deformation rate
tensor

G,r= effective modulus=G(1+&)

The problem is divided into two regions, below
the PET (Plastic-Elastic Transition) and above the
PET. At the PET, the constitutive model shifts
from the liquid-like to solid-like and the elastic
strain components are obtained from it. Above the
PET, since the change of angle is expected to
be very small due to high effective modulus, 6=0
which simplifies goverining equations as algebraic
equations except the energy equation. Tempera-
ture at the plastic transition point can be used
as the boundary condition. Cao and Campbell’s
comparison of numerical prediction with Gupta's
experimental result is presented in Fig. 6 for bub-
ble radius and Fig. 7 for the velocity. Fig. 8 shows
predicted film thickness variation. When the yield
stress is set to zero, the film thickness approaches
zero while the velocity increases almost unboun-
ded. This shows the importance of yield stress
in the simulation. The influence of yield stress
on the film velocity through effective viscosity ap-
pears to cause the film velocity to approach a limit

2.0

o
1

AL AhA

Bubble Radius, Dimensionless

— Visco-picstic—eicstic mode!
o0 Guota's dgata of PS, run 20

0.5 4+—rrrr—r
0
o

PED AT U U ST W O W A

. 10 15 20
istcnce from the Die, Jimensionless

-

Fig. 6. Predicted bubble radius (Cao and Campbell

(29)).
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Fig. 7. Predicted film velocity (Cao and Campbell
(29)).

as the effective yield stress increase due to the
decreasing temperature and increasing orienta-
tion.

Stabilities in Film Blowing
Process Simulation

The stabilities in film blowing process simula-
tion were studied by many researchers experime-
ntally and theoretically. Han and Park [17], Kanai
and White [32], White ef al. [33, 34] have repor-
ted observations of flow instabilities in film blo-
wing experiments. Yeow [23] and Cain [35] nu-
merically investigated bubble stability to infinite-
simal disturbance. Yeow considered only Newto-
nian fludis, while Cain investigated both Newto-
nian fluid and Maxwell fluid. According to Cain’s
study, multiple solutions for the bubble shape are
possible for some values of operating parameters,
and axisymmetric steady state solutions can cease
to exist in spite of small changes in operating pa-
rameters. Several types of process instabilities
exist, partly depending on the selection of opera-
ting variables; one of such instability is a periodic
thickness fluctuation that is analogous to draw re-
sonance in fiber spinning. Cain solved differential
equations not using previously used “shooting
method” but using Newman'’s banded matrix tech-
nique which provides readily attainalbe solutions

Film Thickness (cm)
o
o
1
z

(8]
(&)
(o]

Fig. 8. Predicted film thickness (Cao and Campbell
29)).

W

Biow-Up Rulio

Fig. 9. Computed results for the isothermal film blow-
ing of a Newtonian fluid, X=5 (Cain and
Denn (31)).

but couldn’t be obtained if shooting method was
used.

Fig. 9 shows an exemplary case obtained by
Cain. Several interesting features are immediately
apparent. First a given draw force contour may
intersect a given pressure contour more than
once. So, simply defining B and T, does not uni-
quely determine the bubble profile which means
multiple solution can exist. Furthermore, given
operating parameter contours may have no steady
state solutions. The effect of the operating para-

The Korean J. of Rheology, Vol. 2, No. 2, 1990
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meters variation depends upon whether the initial
bubble profile is corresponding to an upper solu-
tion or a low solution. As an example, while inc-
reasing pressure from a low solutoin causes blow-
up and thining, increasing from an upper solution
casues draw-down and thinning. This reduction
in bubble radius with increasing pressure might
be sounded strangely. However, the pressure dif-
ference at starting moment reaches steady state
soon. Considering larger bubble has a lower sur-
face tension, small pressure difference is approp-
riate to satisfy the force balance. Hence, even
though the larger initial pressure difference at the
operation starting moment would be necessary,
it would be smaller after it reaches the steady
state. This was earlier notified by Petrie [22].
Nonisothermal Newtonian fluid behaves similarly.

For Maxwell fluids, elasticity shows different
behaviour from a Newtonian fluid with increasing
pressure. As pressure increases, a maximum in
BUR (blow-up ratio) develops along the lower bra-
nch and a minimum along the upper branch as
shown in Fig. 10. So no steady solutions can exist
between the first multiple solution and the second
multiple solution. There exists a branch at all pre-
ssure that ends at a point on BUR=1, correspon-
ding to T,~ co. This limit point at high draw force
is an artifact of the Maxwell model, which treats

Blow-Up Ratio

0.23
——=-=0.25

1 1 ]
0] 30 60 90 120

Thickness Reduction

150

Fig. 10. Illustration of the transition from single-to
double-branched pressure contours for Max-
well fluids (Cain and Denn (31)).
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polymer chains as Hookean springs that can be
extended indefinitely. To cure this problem, Cain
used a network rheological models showing more
realistic extensional behavior. The result shows
a constant bubble at BUR=1. This final bubble
thickness continues to decrease without bound as
draw force is increased.

Cain also analyzed bubble stability to infinitesi-
mal disturbance. Using a linear stability theory
(Denn [36]), homogeneous equations with distur-
bance variables can be chaneged as an eigen value
problem. If any eigen value of the system has
a positive value, the solution is unstable to infini-
tesimal disturbance, since the disturbance will
grow with time. Disturbance occured by variation
of operating conditions (pressure, take up tension,
take up velocity, and inflating air) were also inve-
stigated by Cain. The oscillatory instability can
be catastrophic with positive real value. Draw re-
sonance can happen with oscillatory instability. In-
creasing fluid elasticity stabilizes the process. For
a Maxwell fluid, however, draw resonance still
occurs with the inclusion of elasticity along the
lower solution branch, but the instability is now
continued within a small region and disappears
as thickness reduction is further continued. Draw
resonance occurred along the lower banch in weak
elastic fluid was totally disappeared at the higher
level of fluid elasticity. The significant stabilizing
factor in film blowing process is the increase of
fluid viscosity which is due to cooling. Dynamic
freeze line adjustment does not eliminate draw
resonance in film blowing process due to the extra
degree of freedom afforded by the hoop stress
balance.

Unsolved Problems in the Film
Blowing Process Analysis

We just glanced over the past works of film
blowing process analysis. In spite of lots of inten-
sive works, reality is still waiting to be awaken.
There are many problems we didin't or couldn’t
solve or approach at all. First of all, we can’t, at
least current moment, slove highly elastic fluid
extrudate swell problem. We can easily imagine
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that inclusion of extrudate swell with viscoelastic
fluid model can improve the simulation. Secondly,
all provious investigations follow Pearson and Pet-
rie’s mechanical model originated from Alfrey’s
idea. This strategy only applies to a straight up-
ward cylindrical flow. However, in real film blo-
wing process, rotating mandrel is used to produce
more uniform and better film. There we can’t ap-
ply thin-shell approximation because the flow is
no more in two dimensional region. Strong hoop
stress plays a very improtant role in this case.
The problem is not a cylindrical flow, but a helical
flow. After some distance (maybe near freeze
line), higher region can be analyzed using the
thin-shell approximation. But lower part should
be analyzed differently. The another fact that
should be mentioned is, nobody considered multi-
layer film blowing process from the dynamics view
point, though there were some basic strudies
about the multilayer flow coming out from a rota-
ting mandrel (Alfrey et al. [37], Han [38]). We
don’t have any sound basis to approach these pro-
blems yet. Still there is a long way io go. The
other fact we didn't mention in this review is that
double bubble process i1s also used to improve
the film’s physical properties. Recently there were
some open research papers concerned about the
double process (White ef al. [42], Takashige and
Kanai [43]) and its dynamics. But its dynamic
analyses are the same as single bubble process,
so we don't treat them separately.
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