Investigating the Impact of Best Management Practices on Nonpoint Source Pollution from Agricultural Lands

  • ;
  • Saied Mostaghimi (Virainia Polyechnic Institute and State University, Blacksburg, Virginia, U.S.A)
  • Published : 1990.12.01

Abstract

Abstract Over the last several decades, crop production in the United States increased largely due to the extensive use of animal waste and fertilizers as plant nutrient supplements, and pesticides for crops pests and weed control. Without the application of animal waste best management, the use of animal waste can result in nonpoint source pollution from agricultural land area. In order to increase nutrient levels and decrease contamination from agricultural lands, nonpoint source pollution is responsible for water quality degradation. Nonpoint source pollutants such as animal waste, ferilizers, and pesticides are transported primarily through runoff from agricultural areas. Nutrients, primarily nitrogen and phosphorus, can be a major water quality problem because they cause eutrophic algae growth. In 1985, it was presented that Watershed/Water Quality Monitoring for Evaluation BMP Effectiveness was implemented for Nomini Creek Watershed, located in Westmoreland County, Virginia. The watershed is predominantly agricultural and has an aerial extent of 1505 ha of land, with 43% under cropland, 54% under woodland, and 3% as homestead and roads. Rainfall data was collected at the watershed from raingages located at sites PNI through PN 7. Streams at stations QN I and QN2 were being measured with V-notch weirs. Water levels at the stream was measured using an FW-l Belfort (Friez FWl). The water quality monitoring system was designed to provide comprehensive assessment of the quality of storm runoff and baseflow as influenced by changes in landuse, agronomic, and cultural practices ill the watershed. As this study was concerned with the Nomini Creek Watershed, the separation of storm runoff and baseflow measured at QNI and QN2 was given by the master depletion curve method, and the loadings of baseflow and storm runoff for TN (Total Nitrogen) and TP (Total Phosphorus) were analyzed from 1987 through 1989. The results were studied for the best management practices to reduce contamination and loss of nutrients, (e.g., total nitrogen and total phosphorus) by nonpoint source pollution from agricultural lands.

Keywords