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Abstract

In this paper a new approximation method is presented for the nonminimum phase problem of
LQG/LTR. Theoretical analysis and simulation results show that it can be better approximated than

Stein's method.

1. Introduction

LQG(Linear Quadratic Gaussian) design me-
thod has been considered to be successful in such
industrial applications as aircraft, submarine, che-
mical plants, etc. However, it was not known until
1977 if LQG optimal regulators had any guaran-
teed robustness properties.

In 1978, Doyle [1] showed a counter example
that LQG design resulted in very small gain and
phase margins. In other words, it is proven that
arbitrary LQG regulators do not have any guaran-
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teed robustness. As a remedy, LQG-LTR(linear
quadratic gaussian-loop transfer recovery) method
was invented by Doyle and Stein(2). This ‘method
was the outcome of possible ways of improving the
robustness properties of LQG regulators. The te-
chnical ideas needed to prove the LQG-LTR result
were known previously by Kwakernaak (3). Unfo-
rtunately, this method also, like other theories, has
an important theoretical limitations that it is appli-
cable to the only systems which have minimum
phase zeros.

That 1is, it is not applicable to the nonminimum
phase systems. Recently, Stein and Athans(4)
have suggested three options to improve the limi-
tations. The first one is that there is a possibility
to improve it with a Poisson integral constraint as-
sociated with nonminimum phase zeros and sensi-
tivity function. The second one is a generalization
of LQG-LTR process by replacing the Kalman fil-
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ter design with arbitrary choice of filter gains. The
last one is to approximate nonminimum phase sys-
tems with minimum phase design models.

In the first option, it can be commented that the
integral constraint and interpretations for the mi-
nimum phase is, at monent, limited to SISO (si-
ngle input single output) systems.

And also, even though the constraint for MIMO
(multiinput-multioutput) will be available, it is un-
known how much the constraint can be effective
for solving the nonminimum phase problem. In the
second one, the replacemnt of Kalman filter gain
with an arbitrary one does not any more guarantee
such important Kalman filter “built-in” properties
as performance, nominal stability, robustness in
the LQG-LTR method. In a sense, the meaning of
LQG-LTR will be lost. The last one called “Stein
method” is a simple, clever approximation method.
This one also, like other methods, serious theore-
tical limitations which can he well effective in the
low frequency range due to the multiplicative er-
ror resulted from the approximation. The error te-
nds to grow as the frequency increase and become
a considerable amount in the high frequency ra-
nge.

In this research a new LQG-LTR method for
nonminimum phase plants will be studied to imp-
rove the Stein’s approximation error except the
very low frequency range, by a new approximation

technique.
2. Stein’s Approximation Method

Stein’s method basically results from a trial to
define the design plant mode! (DPL) in the LQG
/LTR procedure [4] to be one of the best approxi-
mate minimum phase models of a given nonmini-
mum phase plant by temporarily adding a suitable
multiplicative error.

Technically, the method is to collect all nonmi-
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Approximate G (S) minimum phase model

Fig. 1 The process of obtaining an approximate mini-
mum phase model by the multiplicative error

nimum phase zeros into all pass factors, ie.,
G(S)=Gm(S) Bz(S) (2.1

where G(S) is nonminimum phase transfer fun-
ction matrix and Gm(S) is minimum phase trans-
fer function matrix. And Bz(S) is all pass factor,

Bz(S) Bz(S)"=T1 for all S (2.2)

The nonminimum phase plant G(S) is possible
to be represented with a multiplicative error and
is then approximated by the minimum phase mo-
del G(9), ie.,

G(S)=Gm(S) [I+E(S)]= Gm(S) (2.3)

, which give rise to the multiplicative error E(S).
For a single zero at S=+Z, G(S) and E(S) will
be

e S-2

G(S)=Gm(S) STy (2.4)
98

E(S) = S17 (2.5)

The magnitude of error E(s) grows with the in-
crease of frequency and is limited to 2 as S~

And so, Stein's method will have such a theore-
tical limitation that cannot be applicable in the
high frequency.

3. New Approximation Method

A new approximation method is proposed below
to improve the Stein’s method. This method is to



= LQG/LTR &l g <t —

approximate a given nonminimum phase plant
with a minimum phase model by temporarily ad-

ding an additive error, ie.,

G(S) + E(S) = G(S) (3.
a given an additive an approximate
nonminimum  error minimum
phase plant phase model
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Fig. 2 The process of obtaining an approximate mini-
mum phase model by an additive error

The best approximation depends on the magni-
tude of E(S) generated by the choice of G( S ) .
In order to achieve that E(S) is as small as possi-
ble over all the frequency ranges, the following
procedures are suggested.

Step. 1 Let the error function E(S) have the fo-

llowing form -

S(busS"™ +bpaS" 4 + by S+ b)
S +a,,S"

E(S)=

n=12,(3.2)

Here, the order n of E(S) is decided hy the one
of the given plant function G(S).

Step. 2. Choose minimum phase zeros arbitra-
rily for the numerator of G(S). The denominator
of G(S) may be decided as the common denomi-
nator of G(S) and E(S) for the convenience of ca-
lculation. And the number of minimum phase ze-
ros of G(S) are decided according to the order of
numerator generated after reducing the common

denominator of them.

Step. 3 If the minimum phase zeros of G(S) is
chosen, the unknown coefficients of E(S) and G
(8) will be completely decided by the relationship
of (3.1)

Thus, G(S) will be a minimum phase model
transfer function matrix obtained by the present
approximation method.

It 1s noted that magnitude of the error function
E(S) is reduced as the frequency increase or dec-
reases. And also, the one in the mid-frequency ra-
nge can be controlled to a certain degree by the
choice of minimum phase zeros of G(S) Hence
this new approximation can have an advantage
over Stein's one.

To clarify the procedure presented above, consi-
der a nonminimum phase plant with

—S5+10

G(S):*S'('S’?l)* (3.3)

Step. 1 Since the order of G(S) is 2, G(S) will
take the following form !

ES)=—g—c— (3.4)

Step. 2 Referring to the procedure of step. 2 can
be chosen in the form !
(§+1)’

G - 3.5
G(S) S(S+1) (a252+315+a.) ( )

Step. 3 By the relationship of (3.1) the coeffi-
cients of E(S) and G(S) can be completely deci-
ded.

=85
E(S):-69—~L—~ (3.6)
11 5*+40 S+ 100
and
g - 697 23 23 69 (4o
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S +ES +*é§ St+ 69-8
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4. Simulation thod while Stein's one cannot in the high freque-

ncy. And so, the magnitude only in the middle fre-

In this section the linear time-invariant SISO quency range (10°~10° rad/sec) will be concer-
and MIMO systems will be considered to demons- ned for simulations.

trate the numerical simulations of the proposed
. o prop Example 1 (SISO)
new approximatiom method. And it will be then

compared with Stein's method. It is clearly shown . —S+10
) ) . ] Given G(S) = o~
in the previous section that the magnitude of error S(S+1)
function E(S) in the both low and high frequency By the procedures presented in the section 3
can be reduced significantly by the presented me- the following transfer function of the approximate
minimum phase zeros transfer functions of approximate minimum phase models
100 3 300 o 300 o 100 i) 523y 4] qo 10
(S+1) 5] SH S ST /SIS ST ST S
11 qs 110 o, 1100 11000 509 q3_ 1540 ¢z 1100
(5+10) 555t 53 St gy Stgg /St 3g S+ g St g S
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Fig. 3. Singular value plots of limiting filter loops for an SISO example.
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minimum phase models are obtained in according
to the choice of minimum phase zeros of G(S).
Simulation results in the Fig. 3 show that the
presented method can be better approximated to
the limiting filter loop in the LQG/LTR procedure
(5) by putting the minimum phase zeros far into
the left half planne. This is actually due to the de-
crease of the magnitude of E(S). It is clearly noted
that the degree of approximation depends upon
the choice of minimum phase zeros and the prese-
nted method can be better approximated in the

i
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case of (S+100)" than Stein’s one.

Example 2 (MIMO)

_5~-1 1
$*+25+1 S+1
Given G(S)=
1
0 S—1

Simulation results in the Fig. 4 also show that
($+100)* the minimum phase zeros left far in the
left half plane, can be better approximated than
(S+10)%
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Fig. 4 Singular value plots of limiting filter loops for an MIMO example.

5. Conclusion

In this paper a new approximation method is
presented to improve Stein’s one. Theoretical ana-
lysis and simulation results show that the signifi-

cant improvement is achieved and the better app-
roximation can be also made by a suitable choice
of minimum phase zeros.

The initial choice of minimum phase zeros are

arbitrarily decided and the better choice of them
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are based on the trial and error. And the theoreti- 2. H. Kwakernaak, “Optimal Low-Sensitivity Li-
cal and optimal procedures are not suggested. The near Feedback Systems,” Automatica, Vol. 5,
important future research needing additional work May 1969.

is how to make the optimal procedure theoretically 3. J. C. Doyle and G. Stein, “Multivariable Feed-

for the best approximation. back Design . Concepts for a Classical/Modern

Synthesis,” IEEE Trans. on Auto. Control, Vol.
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