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AN ACCELERATING MONOTONE ITERATIVE TECHNIQUE
FOR NONLINEAR BOUNDARY VALUE PROBLEMS*

S. K. CHuneg

1. Introduction

Consider the problem of the type

¢)) Lz+N(z) =0,
where L is an nXn linear matrix, N : Dom(N) cR*—>R* a nonlinear
transformation. Such problems arise for example as finite difference
approximations to nonlinear differential equations of the type

@ dutf(uw) =g (z, y, u)
or

3 u—Adu=g(z, y,u)
with boundary conditions.

The study of problem (1) by a monotone method has been extensively
studied in [7] as a generalization of the ideas in [4]. The problem
has also been studied in [5] even L is singular. Numerical computa-
tion has been applied to (1) by [6, 8, 9, 10].

In this paper, we study a method which speeds up the convergence
of monotone iterations and give some numerical examples of the types
(2) and (3). In [2] this method has been applied to a system of
hyperbolic differential equations with initial and boundary conditions.

2. An accelerating monotone method

We consider the nonlinear problem (1) R* in the form

4) F(z) : =Lz+N(z) =0.
In order to investigate the existence and approximations of solutions
of this problem, we state the theorem of convergence of monotone
iterative sequences due to [5]. We call this monotone method the usual
monotone method.
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TreEOREM 1. Let F: Dom(F) CR*>R™ e continuous and let there
exist z° y°€ Dom (F) such that
20<H0 [29 ] Dom (F), F(z2%) <0<F(Y),
where [2% y9]={xzER"|2°<2<y°}. Further let there exist a nonsin-
gular M-matrix A such that
F(y) —F(z) <A(y—z) for all 2°<z<y<)P.
Then the sequences {z*} and {y*} defined by

(5) y =yt — ATIF (5¥)
and if A is isotone,
©) h =gk — A71F (%)

converge monotonically to y* and x*, respectively, so that
F(z*) =0=F(»*)
where x20< x* < y* < y0,

Proof. See [5].

In the followings, we study a method of speeding up the conver-
gence of monotone iterative sequences {z*} and {y*}, since the usual
monotone method is often slowly convergent. To accelerate the conver-
gence of these sequences, we combine elements of both {z*} and {y#)
by convex combinations. This method will be called the accelerating
monotone method. This idea comes from [3].

Consider a nonlinear function F:Dom(F)cR*—>R* defined as
F(z)=Lz+N(x), where L is an M-matrix and N(z) is a continu-
ously differentiable nonlinear convex function. Let there exist z°, y°
Dom (F) such that

2°<y0, [29% »]JcDom (F), F(z2%) <0< F ().
We assume that there exists a diagonal matrix D>0 such that
N(y) —N(z) =N’'(¢&) (y—z)
<D(y—x)
for all z, y such that 2°<z<y<y® where £€ [z, y].

Since L is an M-matrix and D is a nonnegative diagonal matrix,
L+-D is also an M-matrix. So we can define new vectors

. xl=2— (L+D)71F(2%) = (L+ D)~ (D2~ N(z%))

® y=30—(L+D)7F(y*) = (L+ D)~ (Dy*—N ("))
and

9 1= Q1Q—ap 2 +ap!
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(10) ' =(1—5b) ¥ +by2!
where a; and 4; are nonnegative constants such that
ay (2 — 294 50— 1) < 1 40,
by (2! — 20+ 50— y1) <y0—y,
respectively. Then we have p!>z! and g'<yL
From (7) and (8) we obtain
1= A —ay) 2t +ay!
=(1—a) (L+D)™! {Dz°--N(z%}
+a1(L+ D) H{Dy*—~N ()}
Multiplying both sides by (L+D), we get
(L+D)p'=(1—a) {Dz'—N (2%} +a; {Dy*— N (") }.
Hence we have
F(p") =Lp'+N(p")
= (1—ay) D(2®—z') +a; (3 —y!) — (1—a,) N (%)
—a;N () +N{ (1—ay) 2! +aly1}
<D{(1—ay) (2°—2!) +a;(3°—»1)}
—N{(1—ap)2'+a;p°} + N{(1—ay) ' +ay!}
=D{(1—ay) (2"—z") +a,(5°—y1)}
=N (&) {A—ap) (2°—21) +a, (30 —»)}
=(D—=N" (&) {((1—ap) (2®—2) +a; " — 1)}
<0,
since D—N’(§) 20 and (1—a;) (2°—21) +a; (5 — ') <0 where & is a
vector between (1—a;)2z%+a;y° and (1—a;)z'+a;»!. This shows that
Pt is a lower solution of F(x) =0.
Similarly, we can show that ¢! is an upper solution.
If we continue these processes by defining
an xF1=pt— (L+D)71F(p*) = (L+D) "1 {Dpt—N(p"}
(12)  y*"'=g¢t— (L+D)7'F(¢") = (L+D) 1 {Dg*—N(g"}
for £=1,2, ... and

(13) = 1—ap) F+app*
14) *= (1—8y) y*+ bt
for £=2,3, ..., where a; and %, are constants such tha

ay (xk_Pk—l _+.qk-l _yk) < xk_Pk—l
by (xle_‘bk—l _+_qk—1 __yle) < qlz—l _.yk’
we have the following inequalities;
LIPS <P PP <2< P <y,
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Then {p*} and {z*} are sequences of lower solutions and {g*} and {y*}

are sequences of upper solutions. Furthermore, these sequences con-
verge monotonically.

Therefore we have the following theorem.

THEOREM 2. Let F: Dom(F) CR*—R"™ be defined as F(z)=Lzx+
N(x), where L is an M-matriz and N(x) is a continuously differen-
tiable convex function. Let there exist x° y°€ Dom(F) such that

2°<y0, [2% Y] Dom (F), F(2%) <O<F(5°)

Furthermore we assume that there exists a diagonal matriz D>0 such
that

N(y) —N(z) =N'(¢) (y—z) <D(y—x)

Sfor all x,y such that <z <y<)0 where E€[x,y]. Then the sequences
{uz} and {v;} defined as

ug=2% up_ 1=zt wupy=p
and
v9=5" va1=y%, vu=q%
where {z*}, {p*}, {»*) and {q*} are generated as in (7)—(14),
converge monotonically to z* and y* respectively. And we get
F(z*) =0=F (%),

where x0<r*<y*<H0,

3. Numerical examples

In this section we will give some numerical examples of nonlinear
boundary value problems of the type (2) and (3). We approximate
the given differential equations by finite difference methods and use the
centered difference scheme for the second derivatives. We compute
approximate solutions using the usual monotone method and the
accelerating monotone method and count numbers of iterations to
compare the speed of convergence for both methods.

ExampLe 1. We first consider a nonlinear heat conduction problem



An accelerating monotone iterative technique for nonlinear boundary value problems

W =utut/d4, 0<x<1

with boundary conditons «’(0)=0 and »(1)=1. This problem has
been studied in [1] where analytical pointwise bounds for the lower
and upper solutions have been obtained.

From the physical point of view, we use the centered difference
scheme for the Neumann boundary condition and we can take uy=0,
v=1 and a diagonal matrix with entries 1.5 [1]. We stopped com-
puting when |x,—v,| <107 and applied the accelerating monotone
method if |u,.1—u,+v,—v,,,<1072 For the usual monotone method
we needed 7781 iterations and for the accelerating monotone method
5098 iterations and 561 accelerations were needed. The following table
shows the numerical solutions obtained by the accelerating monotone
method.

z 2% y

0.0 0. 60850 0. 60851
0.2 0. 62259 0. 62260
0.4 0. 66557 0. 66558
0.6 0. 73976 0.73976
0.8 0. 84918 0. 84918
1.0 1. 00000 1. 00000

ExamprLe 2. We consider a nonlinear elliptic boundary value problem
du+2u=tan"'(u) +sinz siny, (x,y)<EQ
u==(), (z, y) €0Q
where 2=[0, z]X[0,z]. This type of problem has been studied in
[5] by the usual monotone method.

Using #y=0, vy=1, A=1/50 and a diagonal matrix D with entries
1, we obtained the following table which shows the lower and upper
soluitons at z=1.50796. We stopped computing when iterative
sequences met conditions in Example 1. For the usual monotone method
we obtained 3258 iterations and for the accelerating monotone method
2232 iterations and 369 accelerations were needed.
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z y % s
0. 000000 0. 000000 0. 000000
0. 314159 0. 157598 0. 157601
0. 628319 0. 300289 0. 300295
0. 942478 0. 414175 0.414183
1. 256637 0. 487691 0. 487701
1. 570796 1. 570796 0. 513105 0. 513115
1. 884956 0. 487691 0. 487701
2. 199115 0.414175 0.414183
2.513274 0. 300289 0. 300295
2. 827433 0. 157598 0. 157601
3. 141593 0. 000000 0. 000000

ExamrLe 3. For the last example we treat a nonlinear periodic
parabolic problem

U Uz =01 (024_1‘4) +c3 (t9 1‘)
u,=0 at x=qa, z=b

u(t, z) =u(t+p, x)

where a=0, 5=5, $=0.85X1072, ¢,;=0. 1958291075102, ¢;=0.1X
102, ¢=0. 2493389252 X 10% and

" x):{a exp(—22/2), 0<t<0.0005

0 0. 0005<¢<_p.
This problem has been studied in [10] to model the temperature dis-
tribution in a device used to measure properties of the meson beam at

Los Alamos Meson Physics Facility.

We used #,=10.0, 7,=1900 and a diagonal matrix D with diagonal
elements 4civ®. And we used grids size dt=p/350 and Ax=b/16.
Choosing a centered difference scheme, we computed both the lower
and the upper solution. Solutions #, and v, were accepted when Juy—
v,] <107%|v,|, and we applied the accelerating monotone method when
lt4y—v,|>10"2|v,|. We obtained 3960 iterations for the usual mono-
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t x z* ¥
0. 0000 893. 98071 893. 98071
0. 3125 883. 74265 883. 74266
0. 6250 854. 18422 854. 18422
0. 9375 808. 64629 808. 64631
1. 2500 752. 20224 752. 20226
1. 5625 690. 78229 690. 78232
1. 87500 630. 00395 630. 00401
2.1875 574. 13169 574. 13178
0.0 2. 5000 525. 59694 525. 59707
2. 8125 485. 16906 485. 16922
3.1250 452. 51224 452. 51245
3.43750 426. 77900 426. 77925
3. 75000 407. 03215 407. 03244
4. 06250 392. 46214 392. 46247
4. 3750 382. 45916 382. 45952
4. 6875 376. 61302 376. 61339
5. 0000 374. 69080 374. 69117

tone method and 1940 iterations and 13 accelerations were obtained for
the accelerating monotone method.
The following table shows approximate soluitons at #=0.

Acknowledgment. The author would like to thank Professor R.
Kannan at the University of Texas at Arlington for the suggestion
of this problem.
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