PROPERTIES OF THE GENERALIZED EVALUATION SUBGROUP OF A TOPOLOGICAL PAIR

Moo Ha Woo

Let X be a topological space and A be a subspace of X. A homotopy $H: X \times I \rightarrow X$ is called a *cyclic homotopy* [Go] if

$$H(x, 0) = H(x, 1) = x$$
.

If H is a cyclic homotopy and $x_0 \in A$ is a base point, the loop given by $h(s) = H(x_0, s)$ is called the *trace* of H.

The set of homotopy classes of those loops which are the trace of some cyclic homotopy form a subgroup $G(X, x_0)$ which is called the evaluation subgroup of the fundamental group $\pi_1(X, x_0)$ [Go]. $G(X, x_0)$ is denoted J(X) by Jiang $[J_2]$. If we consider the class of continuous functions $H: A \times I \rightarrow X$ such that

H(x,0)=H(x,1)=i(x) and $i:A\to X$ is the inclusion, then the trace $h(s)=H(x_0,s)$ of H is a loop at x_0 in X. In this case, H is called an affiliated homotopy to [h] with respect to A. The trace subgroup $G(X,A,x_0)$ of $\pi_1(X,x_0)$ is defined by $G(X,A,x_0)=\{\alpha\in\pi_1(X,x_0): \text{ there exists an affiliated homotopy } H \text{ such that } [H(x_0,)]=\alpha\}$. In particular, we have that $G(X,X,x_0)=G(X,x_0)$ and $G(X,x_0,x_0)=\pi_1(X,x_0)$.

Let A be locally compact and regular, and X^A be the space of mappings from A to X with compact open topology. The map $p: X^A \to X$ given by $p(g) = g(x_0)$ is continuous. Thus p induces a homomorphism $p_*: \pi_1(X^A, i) \to \pi_1(X, x_0)$. In this case, the image of p_* is $G(X, A, x_0)$ [WK]. Thus $G(X, A, x_0)$ is called the *generalized evaluation subgroup* of the fundmental group. It is clear that $G(X, x_0)$ is a subgroup of $G(X, A, x_0)$.

In $[J_2]$, Jiang showed that $J(X) = G(X, x_0)$ is a subgroup of $Z(\pi_1(X, x_0))$. We generalize this result as follows:

Received October 4, 1989.

Revised January 30, 1990.

Research supported by Korea Science and Engineering Foundation.

 $G(X, A, x_0)$ is contained in $Z(i_*(\pi_1(A, x_0)), \pi_1(X, x_0)),$ THEOREM 1. where Z(H, K) denotes the centralizer of a subgroup H of K.

Proof. Let $\alpha \in G(X, A, x_0)$. Then there exists an affiliated homotopy $H: A \times I \rightarrow X$ such that H(x,0) = H(x,1) = i(x) and $[H(x_0,1)] = \alpha$. Let $\beta = \lceil f \rceil$ be any element of $\pi_1(A, x_0)$. We must show that $\alpha i_*(\beta) = i_*(\beta)$ α . Let $K = H(f \times 1_I) : I \times I \rightarrow X$. Define a homotopy $G : I \times I \rightarrow X$ by

$$G(s,t) = \begin{cases} K(2s(1-t), 2st), & 0 \le s \le 1/2 \\ K(1-(2-2s)t, (2-2s)t+2s-1), & 1/2 \le s \le 1. \end{cases}$$
Then $[G(\ ,0)] = i_*(\beta)\alpha$ and $[G(\ ,1)] = \alpha i_*(\beta)$. Since $G(0,t) = x_0$

=G(1,t), we have $\alpha i_*(\beta) = i_*(\beta)\alpha$.

 $J(X) = G(X, X, x_0)$ is a subgroup of $Z(\pi_1(X, x_0), \pi_1)$ $(X, x_0) = Z(\pi_1(X, x_0)).$

If A is a connected aspherical polyhedron, then the reverse is also true.

Theorem 3. If A is a connected aspherical polyhedron and $A \subseteq X$, then $G(X, A, x_0) = Z(i_*(\pi_1(A, x_0)), \pi_1(X, x_0)).$

Proof. By the previous theorem, it was proved that $G(X, A, x_0)$ is contained in $Z(i_*(\pi_1(A, x_0)), \pi_1(X, x_0))$.

The proof of the reverse is quite analogous to Theorem 10 [7A, Br]. Take a triangulation (K, τ) of A and choose $x_0 \in A^0$ (0-skeleton of A). Define a map $h: (A \times \{0\}) \cup (A^0 \times I) \rightarrow A$

by
$$h(x,t) = \begin{cases} x, & \text{if } t=0 \\ C_x(t), & \text{if } x \in A^0 \end{cases}$$

where C_x is a path from x to x_0 and C_{x_0} is the trivial path. Then there exists an extension $H: A \times I \rightarrow A$ of h. Define $d: A \rightarrow A$ by d(x)=H(x,1). Then the map d is homotopic to 1_A and $d(A^0)=x_0$. Define $\tilde{i}=i\circ d$, then $\tilde{i}(A^0)=x_0$. Let α be an element of $Z(i_*(\pi_1(A,x_0)),$ $\pi_1(X, x_0)$ and $\alpha = [c]$. Define $h_1: Q^1 = A \times \partial I \cup A^0 \times I \to X$ by

$$h_1(x, u) = \begin{cases} \overline{i}(x), & \text{if } u = 0 \text{ or } u = 1\\ c(u), & \text{if } x \in A^0 \end{cases}$$

For 1-simplex s_j of K, let $\sigma_j = \tau(cl|s_j|) \times \{0\} \subset Q^1$, then there is a homeomorphism $\phi_i: I \rightarrow \sigma_i$. Define $c_i = h_1 \circ \phi_i = \tilde{i} \circ \phi_j = i \circ d \circ \phi_j$ but $d \circ \phi_j$ is a loop in A based at x_0 . Therefore $[c_j] = [i \circ d \circ \phi_j] = i_*([d \circ \phi_j]) \in i_*(\pi_1)$ (A, x_0)). Since $\alpha = [c]$ is contained in $Z(i_*(\pi_1(A, x)), \pi_1(X, x_0)), [c]$

$$\begin{split} & [c_j] = [c_j][c]. \text{ Therefore, there exists a map } L_j: I \times I \to X \text{ such that } L_j \\ & (t,0) = L_j(t,1) = c_j(t) \text{ and } L_j(0,u) = L_j(1,u) = c(u) \text{ for all } t,u \in I. \text{ Define } \\ & H_j: \sigma_j \times I \to X \text{ by } H_j(x,u) = L_j(\phi_j^{-1}(x),u). \text{ If } & (x,u) \in \partial(\sigma_j \times I) \subset Q^1, \\ & \text{then } H_j(x,u) = h_1(x,u). \text{ Write the 1-simplices of } K \text{ as } s_1,s_2,\cdots,s_{r(1)}; \\ & \text{then } Q^2 = (A \times \partial I) \cup \bigcup_{j=1}^{r(1)} (\sigma_j \times I). \text{ Extend } h_1 \text{ to a map } h_2: Q^2 \to X \text{ by } \end{split}$$

$$h_2(x, u) = \begin{pmatrix} \vec{i}(u) & \text{if } u = 0 \text{ or } u = 1 \\ H_j(x, u), & \text{if } x \in \sigma_j \text{ for some } j = 1, ..., r(1). \end{pmatrix}$$

Assume that h_2 has been extended to a map $h_p: Q^p \rightarrow X$, $(p \ge 2)$. Take some p-simplex s_j of K and again define

$$\sigma_j = \tau(cl|s_j|) \times \{0\} \subset A \times \{0\}$$

Since $\partial(\sigma_j \times I) \subset Q^p$, we have the restriction $h_{p,j}: \partial(\sigma_j \times I) \to X$ of h_p . We assumed that A was aspherical, so $\pi_p(A, x_0)$ is trivial. Since $\sigma_j \times I$ is homeomorpic to I^{p+1} , we can extend $h_{p,j}$ to a map $h_{p+1,j}: \sigma_j \times I \to X$. Write the p-simplices of K as $s_1, ..., s_{r(p)}$ and define $h_{p+1}: Q^{p+1} \to X$ by

$$h_{p+1}(x, u) = \begin{cases} i(x), & \text{if } u = 0 \text{ or } u = 1\\ h_{p+1, j}(x, u), & \text{if } x \in \sigma_j \text{ for some } j = 1, ..., r(p). \end{cases}$$

Then h_{p+1} is an extension of h_p . Since $Q^n = A \times I$ for some n, we have proved the existence of a map $H = h_n : A \times I \to X$ whose restriction on Q^1 is h_1 . Thus $H(x,0) = H(x,1) = \overline{i}(x)$ and $H(x_0,u) = h_1(u) = c(u)$. Since d is homotopic to 1_A , there is a homotopy G from $i \circ d$ to i (rel x_0). Define $K: A \times I \to X$

by
$$K(a, s) = \begin{cases} G(a, 1-3s), & 0 \le s \le 1/3 \\ H(a, 3s-1), & 1/3 \le s \le 2/3 \\ G(a, 3s-2), & 2/3 \le s \le 1. \end{cases}$$

Then K(a, 0) = i(a) = K(a, 1) and $K(x_0, u) = c(u)$. Therefore [c] is an element of $G(X, A, x_0)$.

Corollary 4. If the inclusion $i: A \rightarrow X$ has a left homotopy inverse, then $G(X, A, x_0) \cap i_*(\pi_1(A, x_0))$ is contained in $i_*(Z(\pi_1(A, x_0)))$.

Proof. Let 1 be a left homotopy inverse of *i*. Then $1 \circ i$ is homotopic to 1_A and hence i_* is a monomorphism. Let α be an element of $G(X, A, x_0) \cap i_*(\pi_1(A, x_0))$. Then $\alpha = i_*(\beta)$ for some $\beta \equiv \pi_1(A, x_0)$. Let γ be any element of $\pi_1(A, x_0)$. Since $G(X, A, x_0) \subset \mathbb{Z}(i_*(\pi_1(A, x_0)), \pi_1(X, x_0))$, $\alpha = i_*(\beta) \in G(X, A, x_0)$ and $i_*(\gamma) \in i_*(\pi_1(A, x_0))$, we have $i_*(\gamma)$

 $i_*(\beta) = i_*(\beta) i_*(\gamma)$. Therefore $\gamma \beta = \beta \gamma$ This implies $\beta \in Z(\pi_1(A, x_0))$. Hence $\alpha = i_*(\beta)$ belongs to $i_*(Z(\pi_1(A, x_0)))$.

Theorem 5. Let A be a connected aspherical polyhedron. Then the inclusion $i: A \rightarrow X$ satisfies $i_*(\pi_1(A, x_0)) \subset Z(\pi_1(X, x_0))$ if and only if $G(X, A, x_0) = \pi_1(X, x_0)$.

Proof. By Theorem 3, we have $G(X, A, x_0) = Z(i_*(\pi_1(A, x_0)), \pi_1(X, x_0))$. Since $i_*(\pi_1(A, x_0) \subset Z(\pi_1(X, x_0))$, we have $G(X, A, x_0) = \pi_1(X, x_0)$.

Conversely, if $G(X, A, x_0) = \pi_1(X, x_0)$, then $i_*(\pi_1(A, x_0))$ is contained in $Z(\pi_1(X, x_0))$.

Jiang $[J_2]$ showed that $J(X, f(x_0)) \subset J(f, x_0) = \{ \S \subset \pi_1(X, f(x_0)) : \text{there exists a cyclic homotopy } H: f \subset f \text{ such that } [H(x_0,)] = \S \}$ In the following theorem, we show that $J(X, f(x_0)) \subset G(X, f(X), f(x_0)) \subset J(f, x_0)$.

THEOREM 6. Let $f: X \to X$ be a self-map and $y_0 = f(x_0)$. Then $G(X, f(X), y_0) \subset J(f, x_0)$, where $J(f, x_0)$ denotes the Jiang subgroup of $\pi_1(X, y_0)$ $[J_2, Br]$. In particular, if $f^2 = f$, then $G(X, f(X), y_0) = J(f, y_0)$, where $y_0 \in f(X)$.

Proof. Let α be an element of $G(X, f(X), y_0)$. Then there exists an affiliated homotopy $H: f(X) \times I \to X$ such that H(y, 0) = i(y) = H(y, 1) and $[H(y_0,)] = \alpha$. Define $K = H(f_0 \times 1_I) : X \times I \to X$, where $f_0: X \to f(X)$ is a map such that $f_0(x) = f(x)$. Then $K(x, 0) = H(f_0(x), 0) = i(f_0(x)) = f(x) = K(x, 1)$. Since $K(x_0, s) = H(f_0(x_0), s) = H(y_0, s)$, we have $\alpha = [H(y_0,)] = [K(x_0, s)]$. This implies $\alpha \in J(f, x_0)$.

Suppose $f^2=f$. Let α be an element of $J(f, y_0)$. Then there exists a cyclic homotopy $H: X \times I \rightarrow X$ such that H(x, 0) = f(x) = H(x, 1) and $[H(y_0,)] = \alpha$. Define $K = H(i \times 1_I) : f(X) \times I \rightarrow X$. Then K(y, 0) = H(y, 0) = f(y) = f(f(x)) = f(x) = y = K(y, 1) and $K(y_0, t) = H(y_0, t)$. Thus $\alpha = [H(y_0,)] \in G(X, f(X), y_0)$.

COROLLARY 7. Let f and g be self-maps of X such that $f^2=f$, $g^2=g$ and f(X)=g(X). Then $J(f, y_0)=J(g, y_0)$, where $y_0 \in f(X)$.

In [Br], we know that if f is a self-map of X such that $J(f, x_0)$

Properties of the generalized evaluation subgroup of a topological pair

 $=\pi_1(X, x_0)$, then all the fixed point classes of f have the same index. If we use Theorem 6, we have the following;

Corollary 8. Let f be a self-map of X such that $f^2=f$, $x_0 \in Fix(f)$ and $G(X, f(X), x_0) = \pi_1(X, x_0)$. Then all the fixed point classes of f have the same index.

THEOREM 9. Let f_i (i=1,2) be self-maps of X and f_1 is homotopic to f_2 by a homotopy K such that $K(f_i^{-1}f_i\times 1_I)$ is single valued. Then $G(X, f_1(X), f_1(x_0))$ is isomorphic to $G(X, f_2(X), f_2(x_0))$.

Proof. Let K be the homotopy from f_1 to f_2 such that $K(f_i^{-1}f_i \times 1_I)$ is single valued. Let $P(t) = K(x_0, t)$, Then P is a path from $f_1(x_0)$ to $f_2(x_0)$. Since $P_*: \pi_1(X, f_1(x_0)) \to \pi_1(X, f_2(x_0))$ is an isomorphism, it is sufficent to show $P_*(G(X, f_1(X), f_1(x_0))) \subset G(X, f_2(X), f_2(x_0))$. Let α be any element of $G(X, f_1(X), f_1(x_0))$. Then there exists an affiliated homotopy $H: f_1(X) \times I \to X$ such that H(x, 0) = H(x, 1) = i(x) and $\alpha = [H(f_1(x_0),)]$. Define $G: f_2(X) \times I \to X$ by

$$G(f_2(x), t) = \begin{pmatrix} K(x, 1-3t), & 0 \le t \le 1/3 \\ H(f_1(x), 3t-1), & 1/3 \le t \le 2/3 \\ K(x, 3t-2), & 2/3 \le t \le 1 \end{pmatrix}$$

Then G is well defined and continuous. Since G(y, 0) = y = G(y, 1)

and
$$G(f_2(x_0), t) = \begin{pmatrix} K(x_0, 1 - 3t), & 0 \le t \le 1/3 \\ H(f_1(x_0), 3t - 1), & 1/3 \le t \le 2/3 \\ K(x_0, 3t - 2), & 2/3 \le t \le 1 \end{pmatrix}$$
$$= \begin{pmatrix} P(1 - 3t), & 0 \le t \le 1/3 \\ h(3t - 1), & 1/3 \le t \le 2/3 \\ P(3t - 2), & 2/3 \le t \le 1 \\ = (P * h * P)(t), \end{pmatrix}$$

thus $P_*(\alpha)$ belongs to $G(X, f_2(X), f_2(X), f_1(x_0))$, where $h(t) = H(f_1(x_0), t)$.

References

- (Br). Brown, R. F. The Lefschez fixed point theorem, Scott-Foresman, Chicago, 1971.
- [Go]. Gottlieb, D. H. A certain subgroup of the fundamental group, Amer. J.

Moo Ha Woo

Math. 87(1965), 840-856.

- [J]. Jiang, B. J. Lectures on Nielsen fixed point theorey, Contemp. Math. 14 Providence: Amer. Math. Soc. 1983.
- (WK). Woo, M.H. and Kim, J. Certain subgroups of homotopy groups, J. of Korean Math. Soc. 21-2(1984), 106-120.

Korea University Seoul 136-701, Korea