A NOTE ON S-SETS IN A FIXED GROUP

Hyung Soo Song

1. Introduction

In this paper we introduce $S(X, x_0)$ which is a generalization of Ellis group $G(X, x_0)$, and S-sets in $S(X, x_0)$. In particular we find the sufficient condition for the group A(I) of all automorphisms of I and K=Iu to be isomorphic, where I is a minimal right ideal and u is an idempotent of I.

2. Preliminaries

A transformation group or flow (X, T) will be consist of a jointly continuous action of the discrete topological group T on the compact Hausdorff space X. A minimal set (X, T) is said to be regular if for any almost periodic point (x, y) of $(X \times X, T)$, there exists an automorphism ϕ of (X, T) such that $\phi(x) = y$.

Let βT denote the Stone-Cěch compactification of T. Then $(\beta T, T)$ is a universal point-transitive flow, and βT is an enveloping semigroup for X, whenever X is a flow with acting group T.

Let us fix from now on a minimal right ideal I in βT . We denote by J its set of idempotents and choose a distinguished idempotent $u \in J$. We denote by K the group Iu. Given a minimal flow X, we choose a point $x_0 \in Xu = \{xu \mid x \in X\} = \{x \mid xu = x\}$. Under the canonical map $\pi: (\beta T, e) \rightarrow (X, x_0)$, I is mapped onto X and u onto x_0 .

Throughout this paper, the set of automorphisms of (X, T) is denoted by A(X) and the set of proximal pairs in (X, T) is denoted by P(X, T).

Definition 2.1 [4]. For this pointed minimal flow (X, x_0) , we define $G(X, x_0) = \{\alpha \in K | x_0 \alpha = x_0\}$ or, simply, G, which is called the

Received September 28, 1989.

Revised April 11, 1990.

Ellis group of (X, x_0) .

LEMMA 2.2 [1]. Let $x \in X$, $p \in E(X)$, the enveloping semigroup of X, and $\phi \in H(X)$, where H(X) denotes the set of all endomorphisms of X. Then $\phi(x)p = \phi(xp)$.

Lemma 2.3 [1]. Let $\phi \in H(I)$, where (I, T) is minimal right ideal. Then there exists $p \in I$ such that $\phi = L_p$, where $L_p(q) = pq$ for all $q \in I$.

LEMMA 2.4 [1]. Let (X, T) be a minimal set, and I a minimal right ideal in E(X). Then every $\phi \in H(X)$ is induced by some $L_p \in A$ (I). If X is written as I/R, where R is closed T-invariant equivalence relation on I, then $L_p \in A(I)$ induces $\phi \in H(X)$ if and only if $pR \subset R$ and $L_p \in A(I)$ induces $\phi \in A(X)$ if and only if pR = R.

Lemma 2.5 [6]. P(X, T) is on equivalence relation if and only if (E(X), T) is regular.

REMARK 2.6 [3]. Let (X, T) be a flow and $\phi: \beta T \to X$. Then ϕ induces $\theta: (\beta T, e) \to (E(X), e)$ which is independent of ϕ . This permits one to consider an element p of βT as a map of X into X viz. $xp = x\theta(p)(x \in X)$ i. e., identifying p with $\theta(p)$. With this convention $\phi(qp) = \phi(q)p$ $(p, q \in \beta T)$.

3. The role of S-sets in a fixed group

DEFINITION 3.1. For this pointed minimal flow (X, x_0) , we define $S(X, x_0) = \{\alpha \in K \mid x_0 \phi(\alpha) = x_0 \text{ for some } \phi \in A(I)\}$. For a fixed $\phi \in A(I)$, the set $\{\alpha \in K \mid x_0 \phi(\alpha) = x_0\}$ is called the S-set in $S(X, x_0)$ and is denoted by $S_{\phi}(X, x_0)$ or, simply, S_{ϕ} .

REMARK 3.2 (1) If A(I) is the trivial group, then $S(X, x_0) = G(X, x_0)$. (2) $G(X, x_0)$ is a subgroup of K.

LEMMA 3.3 If $\phi \in A(I)$, then $\phi \mid K : K \rightarrow K$ is bijective.

Proof. Let $\alpha \in K$. Then there exists $p \in I$ such that $\alpha = pu$. Since $\phi(\alpha) = \phi(pu) = \phi(p)u \in K$, it suffices to show that $\phi \mid K : K \to K$ is onto. Suppose there exists $q \in K - \phi(K)$. Then there exist $v \in I - K$ and $w \in I$ such that $\phi(v) = q = wu$. Since $\phi^{-1} \in A(I)$, there exists $p \in I$ such

that $L_p = \phi^{-1}$. Hence $v = \phi^{-1}(q) = L_p(wu) = (pw)u \in K$, which is a contradiction for $v \notin K$. Hence $\phi \mid K : K \to K$ is onto.

Corollary 3.4. $\alpha \in S_{\phi}$ if and only if $\phi(\alpha) \in G(X, x_0)$.

LEMMA 3.5. $S(X, x_0) = K$.

Proof. Let $\alpha \in K$. Since $(\alpha, u)u = (\alpha, u)$, (α, u) is an almost periodic point of $(I \times I, T)$. Hence there exists $\phi \in A(I)$ such that $\phi(\alpha) = u$ and so $x_0\phi(\alpha) = x_0u = x_0$, which implies $\alpha \in S(X, x_0)$.

THEOREM 3.6. Let $\phi \in A(I)$. Then $\alpha \in S_{\phi}$ if and only if there exists $h \in A(I)$ such that $h \mid G : G \rightarrow G$ is bijective and $\alpha = \phi^{-1}h(u)$.

Proof. If: Suppose we have $\phi \in A(I)$ and $h \in A(I)$ such that $h \mid G : G \rightarrow G$ is bijective and $\alpha = \phi^{-1}h(u)$. Now let $h(u) = \beta$. Then $\phi(\alpha) = \beta \in G$, because $u \in G$. Hence $\alpha \in S_{\phi}$.

Only if: Let $\phi \in A(I)$ and let $\alpha \in S_{\phi}$. Then $\phi(\alpha) = \beta$ for some $\beta \in G$. Since (u, β) is an almost periodic point of $I \times I$ and I is a regular minimal set, there exists $h \in A(I)$ such that $h(u) = \beta$. Hence $\alpha = \phi^{-1}(\beta) = \phi^{-1}h(u)$ and $h(G) \subset G$, because $h(r) = h(ur) = h(u)r = \beta r \in G$ for all $r \in G$. To show that $h|G:G \to G$ is bijective, it is sufficient to show that $h|G:G \to G$ is onto. Suppose there exists $\sigma \in G$ such that $h(w) = \sigma$ for some $w \in K - G$. Then $u = h^{-1}(\beta) = h^{-1}(u\beta) = h^{-1}(u)\beta$. Since G is a subgroup of group K, $h^{-1}(u) = \beta^{-1}$ be in G. Further, $h^{-1}(r) = h^{-1}(ur) = h^{-1}(u)r = \beta^{-1}r \in G$ for all $r \in G$. Hence $h^{-1}(\sigma) \in G$, a contradiction. This proves that $h|G:G \to G$ is onto. Thus $h|G:G \to G$ is bijective.

THEOREM 3.7. Let $\delta, \tau \in A(I)$. If $S_{\delta} \cap S_{\tau} \neq \phi$. Then there exists $h \in A(I)$ such that $h \mid G : \to G$ is bijective and $\delta^{-1}\tau h = 1$, where 1 is an identity map on I.

Proof. Let $\delta, \tau \in A(I)$ and let $\alpha \in S_{\delta} \cap S_{\tau}$. Then there exist $h_1 \in A(I)$ and $h_2 \in A(I)$ such that $h_1 | G : G$ and $h_2 | G : G \rightarrow G$ are bijective, and $\delta^{-1}h_1(u) = \alpha = \tau^{-1}h_2(u)$. Hence $\delta^{-1}h_1 = \tau^{-1}h_2$ on I and $\tau^{-1} = \delta^{-1}h_3$ for some $h_3 \in A(I)$, where $h_3 | G : G \rightarrow G$ is bijective. Thus $\delta \tau^{-1}h = 1$ for some $h \in A(I)$, where $h | G : G \rightarrow G$ is bijective and 1 is an identity map on I.

Lemma 3.8. Let $\phi, \tau \in A(I)$. Then $S_{\phi}S_{\tau} = \bigcup \{S_{\tau h \phi} | h \in H\}$, where $H = \{h \in A(I) \mid h \mid G : G \rightarrow G \text{ is bijective}\}$.

Proof. For each $r \in S_{\phi}S_{\tau}$, we let $r = \alpha\beta$ for some $\alpha \in S_{\phi}$ and $\beta \in S_{\tau}$. Then there exist $h_1 \in H$ and $h_2 \in H$ such that $\alpha = \phi^{-1}h_1(u)$ and $\beta = \tau^{-1}h_2(u)$. Hence $r = \alpha\beta = \phi^{-1}h_1(u)\tau^{-1}h_2(u) = \phi^{-1}h_1(\tau^{-1}h_2(u)) = (\tau h_1^{-1}\phi)^{-1}h_2(u)$. Since $\tau h_1^{-1}\phi \in A(I)$ and $h_1^{-1} \in H$, $r \in S_{\tau}h_1^{-1}\phi \subset \bigcup \{S_{\tau h \phi} \mid h \in H\}$.

For the converse inclusion, let $r \in \bigcup \{S_{\tau h \phi} | h \in H\}$. Then there exists $h_1 \in H$ such that $r \in S_{\tau h_1 \phi}$ and hence there exists $h_2 \in H$ such that $r = (\tau h_1 \phi)^{-1} h_2(u)$. Then $r = \phi^{-1} h_1^{-1} \tau^{-1} h_2(u) = \phi^{-1} h_1^{-1} (u \tau^{-1} h_2(u)) = \phi^{-1} h_1^{-1} (u) \tau^{-1} h_2(u)$. Now let $\phi^{-1} h_1^{-1} (u) = \alpha$ and $\tau^{-1} h_2(u) = \beta$. Since $h_1^{-1} \in H$, $\alpha \in S_{\phi}$ and $\beta \in S_{\tau}$. Thus $r = \alpha \beta \in S_{\phi} S_{\tau}$.

THEOREM 3. 9. If $G(X, x_0) = \{u\}$, then

- (1) $S_{\phi}S_{\tau}=S_{\tau\phi}$ for all $\phi, \tau \in A(I)$.
- (2) $\Sigma = \{ S_{\phi} | \phi \in A(I) \}$ is a group.
- (3) \sum and K are isomorphic.

Proof. (1) Let $H = \{h \in A(I) \mid h \mid G : G \rightarrow G \text{ is bijective}\}$. Since $G(X, x_0) = \{u\}$ and $H = \{1\}$, $S_{\phi}S_{\tau} = S_{\tau\phi}$.

- (2) First we show that S_{ϕ} is a singleton for each $\phi \in A(I)$. Since $G(X, x_0) = \{u\}$, $S_{\phi} = \{\alpha \in K | x_0 \phi(\alpha) = x_0\} = \{\alpha \in K | \phi(\alpha) \in G(X, x_0)\} = \{\alpha \in K | \phi(\alpha) = u\}$ and so S_{ϕ} is a singleton. By (1), it is easy to show that S_{Lu} is the identity element of $\sum_{\sigma} (S_{\phi})^{-1} = S_{\phi^{-1}}$, and $(S_{\phi}S_{\tau})S_{\delta} = S_{\phi}(S_{\tau}S_{\delta})$ for all $\phi, \tau, \delta \in A(I)$. Hence $\sum_{\sigma} = \{S_{\phi} | \phi \in A(I)\}$ is a group.
- (3) To show that Σ and K are isomorphic, we define $f: \Sigma \to K$ by $f(S_{\phi}) = \alpha$ if $\phi(\alpha) = u$. Then it is clear that f is well defined. Now let $f(S_{\phi}) = f(S_{\tau}) = \alpha$. Then $\phi(\alpha) = \tau(\alpha) = u$ and hence $\phi = \tau$ on I, because I is a minimal set. This proves that f is injective. For each $\alpha \in K$, there exists $\phi \in A(I)$ such that $\phi(\alpha) = u$, since that (α, u) is an almost periodic point of $I \times I$ and I is a regular minimal set. This proves that f is onto. Finally we show that f is a group homomorphism. Let $S_{\phi}, S_{\tau} \in \Sigma$, and let $f(S_{\phi}) = \alpha$, and $f(S_{\tau}) = \beta$. Then $f(S_{\phi}S_{\tau}) = f(S_{\tau\phi}) = r$ for some $r \in K$, which implies that $\tau \phi(r) = u$. Hence $r = (\tau \phi)^{-1}(u) = \phi^{-1}\tau^{-1}(u) = \phi^{-1}(u\tau^{-1}(u)) = \phi^{-1}(u)\tau^{-1}(u) = \alpha\beta = f(S_{\phi})f(S_{\tau})$. Thus f is an isomorphism.

Corollary 3.10. If $G(X, x_0) = \{u\}$, then A(I) and K are isomorphic.

Proof. It suffices to show that A(I) and Σ are group isomorphic. Now we define $g: A(I) \to \Sigma$ by $g(\phi) = S_{\phi-1}$ for each $\phi \in A(I)$. Since I is a minimal set, $S_{\phi} = S_{\tau}$ implies $\phi = \tau$. Hence $\phi = \tau$ iff $S_{\phi^{-1}} = S_{\tau^{-1}}$, which shows that g is bijective. But $g(\phi\tau) = S_{(\phi\tau)^{-1}} = S_{\tau^{-1}\phi^{-1}} = S_{\phi^{-1}}S_{\tau^{-1}} = g(\phi)g(\tau)$, which means that g is a group homomorphism. Thus A(I) and Σ are isomorphic.

Remark 3.11. Let (X, T) be almost periodic minimal set with abelian acting group T. Then $G(X, x_0) = \{e\}$ and A(E), E and X are isomorphic. In particular X is essentially a compact abelian topological group, and T is a dense subgroup of X which acts by right multiplication.

THEOREM 3.12. Let (X, T) be a distal minimal set and let $x_0 \in X$. Then $S(X, x_0) = E(X)$ is a group and $G(X, x_0) := \pi^{-1}(x_0)$ is a subgroup of E(X).

Proof. Since (X, T) is distal, E(X) is a minimal right ideal and a group. By Lemma 3.5, $S(X, x_0) = E(X)$.

Now let $\Gamma: (X, x_0) \rightarrow (Y, y_0)$ be a homomorphism of pointed minimal sets.

THEOREM 3. 13. (1) For each $\phi \in A(I)$, $S_{\phi}(X, x_0) \subset S_{\phi}(Y, y_0)$.

(2) Γ is proximal iff $S_{\phi}(X, x_0) = S_{\phi}(Y, y_0)$ for all $\phi \in A(I)$.

Proof. (1) Let $\phi \in A(I)$ and $\alpha \in S_{\phi}(X, x_0)$. Then $y_0 \phi(\alpha) = \Gamma(x_0) \phi(\alpha) = \Gamma(x_0) \phi(\alpha) = \Gamma(x_0) = y_0$, which implies $\alpha \in S_{\phi}(Y, y_0)$.

(2) Suppose Γ is proximal and let $\phi \in A(I)$. For each $\alpha \in S_{\phi}(Y, y_0)$, $\Gamma(x_0\phi(\alpha)) = \Gamma(x_0)\phi(\alpha) = y_0\phi(\alpha) = y_0 = \Gamma(x_0)$. Hence $(x_0\phi(\alpha), x_0) \in P(X, x_0)$. But since $\phi(\alpha) \in K$, $(x_0\phi(\alpha), x_0)u = (x_0\phi(\alpha)u, x_0u) = (x_0\phi(\alpha)u, x_0)u$. Therefore $x_0\phi(\alpha) = x_0$ and so $\alpha \in S_{\phi}(X, x_0)$. Thus $S_{\phi}(Y, y_0) \subset S_{\phi}(X, x_0)$. This means that $S_{\phi}(X, x_0) = S_{\phi}(Y, y_0)$.

Conversely suppose that $S_{\phi}(X, x_0) = S_{\phi}(Y, y_0)$ for all $\phi \in A(I)$. Let $y \in Y$ and let $x_1, x_2 \in \Gamma^{-1}(y)$. Then there exist $p, q \in I$ such that $x_0 p = x_1$ and $x_0 q = x_2$. Denote $\alpha = q(pu)^{-1}$, then

$$y_0 \alpha = \Gamma(x_0) q(pu)^{-1} = \Gamma(x_0 q) (pu)^{-1} = \Gamma(x_2) (pu)^{-1}$$

= $\Gamma(x_1) (pu)^{-1} = \Gamma(x_0 p) (pu)^{-1} = \Gamma(x_0) u = y_0 u = y_0.$

Hence $\alpha \in G(Y, y_0) = S_1(Y, y_0) = S_1(X, x_0) = G(X, x_0)$, where 1 is the identity map on I. Thus

 $x_1u=(x_0p)u=x_0(pu)=x_0\alpha(pu)=x_0q(pu)^{-1}(pu)=x_0qu=x_2u,$ which implies $(x_1,x_2)\in P(X,T)$. This means that Γ is proximal.

LEMMA 3.14. $G(X, x_0) = G(Y, y_0)$ if and only if $S_{\phi}(X, x_0) = S_{\phi}(Y, y_0)$ for all $\phi \in A(I)$.

Proof. Only if: Suppose $G(X, x_0) = G(Y, y_0)$ and let $\phi \in A(I)$. For each $\alpha \in S_{\phi}(Y, y_0)$, $\phi(\alpha) \in G(Y, y_0) = G(X, x_0)$. Since $\alpha \in S_{\phi}(X, x_0)$, it follows that $S_{\phi}(Y, y_0) \subset S_{\phi}(X, x_0)$. Hence $S_{\phi}(X, x_0) := S_{\phi}(Y, y_0)$.

If: Let $S_{\phi}(X, x_0) = S_{\phi}(Y, y_0)$ for all $\phi \in A(I)$. Then $G(X, x_0) = S_{Lu}(X, x_0) = S_{Lu}(Y, y_0) = G(Y, y_0)$, because L_u is the identity automorphism on I.

Corollary 3.15[4]. Γ is proximal if and only if $G(X, x_0) = G(Y, y_0)$.

Proof. By (2) of Theorem 3.13 and Lemma 3.14.

Lemma 3.16. Let (X, T) be a minimal set, and (E(X), T) regular. Then the following are true.

- (1) X=I/R for some closed T-invariant equivalence relation R on I, where I is the only minimal right ideal in E(X).
- (2) Suppose, for each $\tau \in A(I)$ there exists $r \in I$ such that $\tau = L_r$ and rR = R. Then (X, T) is regular. (By rR we mean the set of pairs (rq, rq'), where $(q, q') \in R$.)
- *Proof.* (1) Since (E(X), T) is regular, E(X) contains exactly one minimal right ideal I. For each $x \in X$, the map $\theta_x : q \to xq$ of I onto X is an epimorphism. We define a relation on I by $(q_1, q_2) \in R$ if $\theta_x(q_1) = \theta_x(q_2)$. Then R is the closed T-invariant equivalence relation on I, and we may write X = I/R.
- (2) Let $x, y \in X$. Then there exist $p \in I$ and $v \in J(I)$ such that xp = y = yv. Since (I, T) is regular minimal, there exists $r \in I$ and a net $\{t_{\alpha}\}$ in T such that rR = R and $\lim_{n \to \infty} L_r(p)t_{\alpha} = \lim_{n \to \infty} vt_{\alpha} = w$ for some $w \in I$. Now we can define $\phi \in A(X)$ by $\phi(\theta_x(q)) = \theta_x(L_r(q))$ for all

 $q \in I$. Then

 $xw = x \lim_{\alpha \to \infty} L_r(\rho)t_{\alpha} = \lim_{\alpha \to \infty} x(L_r(\rho)t_{\alpha}) = \lim_{\alpha \to \infty} (xr\rho)t_{\alpha} = \lim_{\alpha \to \infty} \phi(yv)t_{\alpha} = \lim_{\alpha \to \infty} \phi(yvt_{\alpha}) = \phi(y)\lim_{\alpha \to \infty} vt_{\alpha} = \lim_{\alpha \to \infty} \phi(yw) = \phi(y)w.$ Hence $(\phi(y), x) \in P(X, T)$. This shows that (X, T) is regular.

THEOREM 3.17. Suppose that X is written as I/R, where R is a closed T-invariant equivalence relation on I and for each $\tau \in A(I)$ there exists $r \in I$ such that $\tau = L_r$ and rR = R. Let $P(X, x_0)$ be an equivalence relation on X. Then

- (1) There exists $\phi \in A(I)$ such that $\phi \mid G(X, x_0) : G(X, x_0) \rightarrow G(X, x_0)$ and $\phi \mid G(Y, y_0) : G(Y, y_0) \rightarrow G(Y, y_0)$ are bijective, and $S_{\phi}(X, x_0) = S_{\phi}(Y, y_0)$.
 - (2) $G(X, x_0) = G(Y, y_0)$.
 - (3) Γ is a proximal homomorphism.
- (4) If (X, x_0) is distal, then Γ is isomorphism, i.e., (X, x_0) is isomorphic to (Y, y_0) .

Proof. First we show that $G(Y, y_0) \subset S_{\phi}(X, x_0)$ for some $\phi \in A(I)$. For each $\alpha \in G(Y, y_0)$, $\Gamma(x_0\alpha) = y_0\alpha = y_0 = \Gamma(x_0)$. By Lemma 2.5 and (2) of Lemma 3.16, (X, x_0) is regular. Hence there exists $f \in A(X)$ such that $(f(x_0\alpha), x_0) \in P(X, x_0)$. Since E(X) contains exactly one minimal right ideal I, $f(x_0\alpha)q = x_0q$ for all $q \in I$. By Lemma 2.4, f is induced by some $L_p \in A(I)$, where $p \in I$. Then $x_0 = x_0u = f(x_0\alpha)u = x_0L_p(\alpha)u = x_0L_p$

$$G(X, x_0) \subset G(Y, y_0) \subset S_{\phi}(X, x_0) \subset S_{\delta}(Y, y_0).$$

By Corollary 3. 4, $\phi(G(X,x_0)) \subset \phi(S_{\phi}(X,x_0)) \subset G(X,x_0)$. As in the proof of Theorem 3. 6 we prove that $\phi|G(X,x_0):G(X,x_0)\to G(X,x_0)$ is onto, i. e., $\phi(G(X,x_0))=G(X,x_0)$. Hence $\phi|G(X,x_0):G(X,x_0)\to G(X,x_0)\to G(X,x_0)$ is bijective. Similarly, $\phi|G(Y,y_0):G(Y,y_0)\to G(Y,y_0)$ is also bijective. But $G(Y,y_0)=\phi(G(Y,y_0))\subset \phi(S_{\phi}(X,x_0))\subset G(X,x_0)$, which implies $G(X,x_0)=G(Y,y_0)$. Thus $S_{\phi}(X,x_0)=S_{\phi}(Y,y_0)$ and so Γ is proximal. Finally we show that Γ is an isomorphism if (X,x_0) is distal. Let (X,x_0) be distal. Then $P(X,x_0)=\Delta$. Let $y\in Y$ and let $x_1,x_2\in \Gamma^{-1}(y)$. Since Γ is proximal, $(x_1,x_2)\in P(X,x_0)$, and $x_1=x_2$. This shows that Γ is one to one, and thus we obtain Γ is an isomorphism.

Hyung Soo Song

THEOREM 3.18. For each $\phi \in A(I)$, $S_{\phi}(X, x_0)$ is a closed subset of I, and $S_{\phi}(X, x_0)$ is compact T_2 .

Proof. First we show that $G(X, x_0)$ is closed. Let $\{\alpha_n\}$ be a net in $G(X, x_0)$ such that α_n converges to α . Then $x_0\alpha = x_0$ ($\lim \alpha_n$) = $\lim x_0\alpha_n = x_0$, and so $\alpha \in G(X, x_0)$, which implies $G(X, x_0)$ is closed. Now let $\alpha \in A(I)$ and $\{\beta_n\}$ be a net in $S_{\phi}(X, x_0)$ such that β_n converges to β . Then $\lim \phi(\beta_n) = \phi(\beta)$, because ϕ is continuous. Since $G(X, x_0)$ is closed and $\phi(\beta_n) \in G(X, x_0)$, $\phi(\beta) \in G(X, x_0)$. This means that $\beta \in S_{\phi}(X, x_0)$. Thus $S_{\phi}(X, x_0)$ is also closed. It is clear that $S_{\phi}(X, x_0)$ is compact T_2 .

References

- 1. J. Auslander, Endomorphisms of minimal sets, Duke Math. J. 30 (1963), 605-614.
- Regular minimal sets I, Trans. Amer. Math. Soc. 123(1966), 469-479.
- 3. R. Ellis, Lectures on topological dynamics, W.A. Benjamin, Inc, 1969.
- 4. S. Glasner, Proximal flows, Springer Verlag, Berlin New York.
- P. Shoenfeld, Regular homomorphisms of minimal sets, doctoral dissertation, University of Maryland, 1974.
- 6. M.H. Woo, Regular transformation groups, J. Korean Math. Soc. 15 (1979), 129-137.

Kwang Woon University Seoul 139-701, Korea