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A NOTE ON S-SETS IN A FIXED GROUP

Hyune Soo Soxc

1. Introduction

In this paper we introduce S(X, xy) which is a generalization of Ellis
group G(X, o), and S-sets in S(X, z,). In particular we find the
sufficient condition for the group A(Z) of all automorphisms of 7 and
K=1Iu to be isomorphic, where I is a minimal right ideal and « is an
idempotent of I.

2. Preliminaries

A transformation group or flow (X, T) will be consist of a jointly
continuous action of the discrete topological group T on the compact
Hausdorff space X. A minimal set (X, T') is said to be regular if for
any almost periodic point (z,y) of (XXX, T), there exists an auto-
morphism ¢ of (X, T) such that ¢(x)=j.

Let ST denote the Stone-Céch compactification of 7. Then (87T, T)
is a universal point-transitive flow, and 87T is an enveloping semigroup
for X, whenever X is a flow with acting group 7.

Let us fix from now on a minimal right ideal 7 in 7. We denote
by J its set of idempotents and choose a distinguished idempotent z<J.
We denote by K the group Iu. Given a minimal flow X, we choose
a point z0€ Xu= {zu|z€X}={z|zu=2z}. Under the canonical map
m: (8T, e)—(X, z,), I is mapped onto X and = onto z,.

Throughout this paper, the set of automorphisms of (X, T) is
denoted by A(X) and the set of proximal pairs in (X, T) is denoted
by P(X, T).

Dermurion 2.1 [4]. For this pointed minimal flow (X, z,), we
define G(X, o) = {a€K|zqa==z,} or, simply, G, which is called the
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Ellis group of (X, z¢).

Lemma 2.2 [1]. Let z€X, p€ E(X), the enveloping semigroup of X,
and ¢ H(X), where H(X) denotes the set of all endomorphisms of

X. Then ¢(x)p=0¢(zp).

Lemma 2.3 [1]. Let ¢ H(I), where(I, T) is minimal right ideal.
Then there exists pE 1 such that ¢=1L,, where L,(q)=pq for all g€l

LemMa 2.4 [1]. Let (X, T) be a minimal set, and I a minimal
right ideal in E(X). Then every € H(X) is induced by some L,&A
(D). If X is written as I/R, where R is closed T—invariant equivalence
relation on I, then L,&A(I) induces = H(X) if and only if pRCR
and L,c A(I) induces g A(X) if and only if pR=R.

Lemma 2.5 [6]. P(X,T) is on equivalence relation if and only if
(E(X), T) is regular.

ReEmark 2.6 [3]. Let (X,T) be a flow and ¢ : S7—X. Then ¢
induces 6 : (BT, e)—(E(X), ¢) which is independent of ¢. This permits
one to consider an element p of 87 as a map of X into X viz. xp=
20(p)(z€X) ie, identifying p with 6(p). With this convention

d(gp)=0()p (p,9<BT).

3. The role of S-sets in a fixed group

Derinition 3.1. For this pointed minimal flow (X, zy), we define S
(X, zp)={ac K| z¢p(a) ==z, for some ¢ A(l)}. For a fixed ¢ A(D),
the set {a€K|zpp(a)==xo} is called the S-set in S(X, zp) and is
denoted by S;(X, zo) or, simply, S;.

Remark 3.2 (1) If A(J) is the trivial group, then S(X, zp)=G(X,
zo). (2) G(X, xy) is a subgroup of K.

Lemma 3.3 If ¢ A(l), then ¢|K : K—K is bijective.

Proof. Let acK. Then there exists p=I such that a=pu. Since
¢(a) =¢(pu) =¢(p)uc K, it suffices to show that ¢|K : K—K is onto.
Suppose there exists g K—@(K). Then there exist v&l—K and we
I such that ¢(v)=g¢g=wu. Since ¢l€A(l), there exists p&l such
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that L,=¢™L Hence v=¢"1(g)=L(wa) = (puw)ucK, which is a
contradiction for v& K. Hence ¢|K : K—K is onto.

CoroLLary 3.4. a&S, if and only if ¢(a)<eG(X, o).
Lemma 3.5. S(X, zo)=K.

Proof. Let a€K. Since (a, w)u=(a, «), (¢, #) is an almost periodic
point of (/XI, T). Hence there exists ¢ A(I) such that ¢(a)=u and
so xop(@) =zqu=xq, which implies ac€S(X, z,).

Tueorem 3.6. Let ¢S A(I). Then aE€S, if and only if there exists
he A(I) such that k|G : GG is bijective and a=¢ 1h(x).

Proof. If: Suppose we have ¢ A(I) and hez A(I) such that 4|G :
G—G is bijective and a=¢1h(x). Now let A(x)=8. Then ola)=8¢€
G, because u&G. Hence a€S,

Only if: Let ¢ A(Z) and let a=S,. Then ¢(a)=8 for some f&
G. Since (, £) is an almost periodic point of IXI and 7 is & regular
minimal set, there exists A& A(I) such that A(x)=pA. Hence a=g¢ 1
(B)=¢"~(x) and A(G)E, because r(r)=h(ur)=h(u)r=p5reG for
all r&G. To show that 2|G: G—G is bijective, it is sufficient to
show that 2|G : G—G is onto. Suppose there exists ¢&G such that
h(w)=c for some weK—G. Then e=h"E) =" 1(uf) =h"1(n) 8.
Since G is a subgroup of group K, A7 '(#)=;"! be in G. Further.
AU =Y ur) =h "W w)r=81%<G for all r&G. Hence FYo)eG, a
contradiction, This proves that 2|G : G—G is onto. Thus |G : G—G
is bijective.

Tueorem 3.7. Let 6, 7€ A(I). If S;NS,#¢. Then there exists he
A(I) such that k|G : —G is bijective and 07th=1, where 1 is an
identity map on I.

Proof. Let 6, 7€ A(I) and let e€5;N 8,. Then there exist heA(D)
and h,&A(Z) such that ;|G : G and |G : G—G are bijective, and
07k (w)=a=1"1ky(u). Hence 67 k=774, on I and 7~1=5§"14, for some
hy€ A(I), where k|G : G—G is bijective. Thus dr k=1 for some
ke A(I), where £|G : GG is bijective and 1 is an identity map on /.
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Lemma 3.8, Let ¢, v€A). Then S;8,=U {SygslhsH}, where
H={hc A(I) | k|G : GG is bijective).

Proof. For each re8,S,, we let r=af for some a€S; and BES..
Then there exist 2;&€ H and hy& H such that a=¢~1h,(x) and S=1"14,
(w). Hence r=af=¢"1h,(u)t7 k() = ¢k (t7ho(0)) = (vhy716) " Lho ().
Since th'¢€ A(D) and k'€ H, reSa ¢S U (S,|hE HI.

For the converse inclusion, let r& U {S.4,]A= H}. Then there exists
hy€ H such that r€S;; ; and hence there exists h,= H such that r=
(zh19) 7 ho(u).  Then 7=¢71h 7 2e hy(u) = ¢ h " (ur ™ hy(u)) =~ 1h, 1
() hy(w). Now let ¢4 '(w)=a and t71hy(u)=pB. Since A,~le
H,aeS; and f€8.. Thus r=af&S,S..

Tueorem 3. 9. If G(X, xo)={u}, then
(1) 848.=S8.4 for all ¢, v A(I).

(2) X={S;19= A1)} is a group.
(3) X and K are isomorphic.

Proof. (1) Let H={h€ A(I) | 2|G : GG is bijective}. Since
G(X, zo)={u} and H={1}, $,5.=5,,.

(2) First we show that S, is a singleton for each ¢ A(I). Since G
(X, z)= {4}, S;={a€K|z9(@) =20} = {a €K |$(a) €G(X, x0)} = {a <
K|¢(a)=u} and so Sy is a singleton. By (1), it is easy to show that
St is the identity element of X, (S,)™1=8;-1, and (848:)85=84(S.S5)
for all ¢, 7,6 A(J). Hence 3= {S;l9= A(D)} is a group.

(8) Toshow that 2} and K are isomorphic, we define f: 3—K by
S(Sy)=a if $(@)=u. Then it is clear that f is well defined. Now let
f(S8)=r(S)=a. Then ¢(a)=1(a)=u and hence ¢=r on I, because
I is a minimal set. This proves that f is injective. For each a€K,
there exists &= A(J) such that ¢(a@)=u, since that (a, ) is an almost
periodic point of /X7 and I is a regular minimal set. This proves that
f is onto. Finally we show that f is a group homomorphism. Let
S S.€ 2., and let f(Sy)=a, and f(S.)=p. Then F(848)=f(S.p)=r
for some reK, which implies that r¢(r)=wu. Hence r=(r¢)"1(a)=
¢ W) = ¢ ur M (W) = (Wt (W) =af=F(8,)f(S.). Thus f is an

isomorphism.
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CorortarY 3.10.  If G(X, z0)={u}, then A(I) and K are isomor-
phic.

Proof. Tt suffices to show that A(Z) and I are group isomorphic.
Now we define g : A(I)—>2] by g(¢)=584_; for each g A(J). Since
I'is a minimal set, S;=3, implies ¢=7. Hence ¢=r iff Sg-1=8.-1,
which shows that g is bijective. But g((;Sr):S(¢,)~1:S,—1¢~1:S¢—1S,—1
=g(¢)g(r), which means that g is a group homomorphism. Thus
A(I) and X are isomorphic.

Remark 3.11. Let (X, T) be almost periodic minimal set with
abelian acting group T. Then G(X, z5)={e} and A(E), E and X are
isomorphic. In particular X is essentially a compact abelian topological
group, and T is a dense subgroup of X which acts by right multipli-
cation.

Tuaeorem 3.12. Let (X, T) be a distal minimal set and let rHeX.
Then S(X, 20)=E(X) is a group and G(X, zo)=7"1(xy) is a subgroup
of E(X).

Proof. Since (X, T) is distal, E(X) is a minimal right ideal and a
group. By Lemma 3.5, S(X, z0)=E(X).

Now let 7': (X, z0)—(Y, y,) be a homomorphism of pointed mini-
mal sets.

THeOREM 3.13. (1) For eack ¢ A(D), S4(X, 20) ©S,4(Y, vo).
(@) I is proximal iff Ss(X, 20)=8,(Y, v0) for all pes A(D.

Proof. (1) Let g€ A(J) and a=S,(X, x,). Then yop(a)=TI(zy)p
(@) =T(zop(a))=T(z¢)=y,, which implies ac S4(Y, yo).

(2) Suppose I' is proximal and let ¢ A(7). For each a € 8,(Y, v0),
T'(zop(a)) = I'(zg)¢(a) = yop(@) =po=1I"(z). Hence (zop(@), z) €
P(X, o). But since ¢p(a)€K, (zod(a), zou=(zp(@)u, zo) = (zyd(a),
z9). Therefore zyp(a)=z, and so a€84(X, xp). Thus S,(Y, y)<=
S4(X, zp). This means that So(X, 20) =8,(Y, 3p).

Conversely suppose that S,(X, 20)=84(Y, yo) for all ¢ A(I). Let
y€Y and let z), 2, I'1(y). Then there exist 7 g€ 1 such that zop=
z; and zog=x; Denote a=¢(pu)~), then
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yoa=I'(z0)q(pu) ™= I'(zoq) (pu) 1= I'(xy) (pu)1
=1"(z1) (puw) " 1=T"(zop) (pu) 1= I'(zp)u=you=y,.
Hence a=G(Y, 0)=81(Y, y0)=81(X, z0) =G(X, z;), where 1 is the
identity map on I. Thus
zu=(zop)u=x,(pu) = zoa(pu) =z0q (pu) ™' ( pu) = zoqu=zu,
which implies (z;, 2) € P(X, T). This means that I is proximal.

Lemma 3.14. G(X, 20) =G(Y, %) if and only if §,(X, z0)=54(Y, 30)
Sfor all = A(D).

Proof. Only if: Suppose G(X, zo)=G(Y, v,) and let g=A(I). For
each a€§,(Y, y0), ¢(@)eG(Y, 3)=G(X, z,). Since ac Ss(X, xo), it
follows that S,(Y, 50) ©S4(X, zo). Hence S4(X, 20):=8,(Y, o).

If: Let S,;(X,20)=84(Y, ») for all ¢€A(I). Then G(X, z0)=S.,
(X, 2)=81.(Y, 30)=G(Y, y0), because L, is the ideatity automorphism
on [.

CoroLLary 3.15[4]. [ is prozximal if and only if G(X, z¢) =G(Y, yo).
Proof. By (2) of Theorem 3.13 and Lemma 3. 14.

Lemma 3.16. Let (X, T) be a minimal set, and (E(X),T) regulor.
Then the following are true.

(1) X=I/R for some closed T-invariant equivalence relation R on I,
where I is the only minimal right ideal in E(X).

(2) Suppose, for each tcA(I) there exists r&1 such that t=1L, and
rR=R. Then (X, T) is regular. (By rR we mean the set of pairs (rq,
rq’), where (q,¢)ER.)

Proof. (1) Since (E(X), T) is regular, E(X) contains exactly one
minimal right ideal I. For each x€X, the map 6, : g—zq of I onto
X is an epimorphism. We define a relation on I by (g1, ¢g)ER if
0.(q1)=0,(q2). Then R is the closed T-invariant equivalence relation
on I, and we may write X==I/R.

(2) Let z,y=X. Then there exist p&I and v=J(I) such that
zp=y=yv. Since (I, T) is regular minimal, there exists r&7 and a
net {z,} in T such that 7R=R and lim L,.(p)¢,=lim vt,=w for some
we&l. Now we can define ¢ A(X) by ¢(0,(¢))=0,.(L.(¢)) for all
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gl Then
zw=gz lim L,(p)t,=lim z(L,(p)t,) =lim (zrp)t,=lim o(xp)e,
=lim ¢(yo)t, =lim g(yvt,) =d(y lim vt,)=¢(yw) =¢(y)w.
Hence (¢(y), ) € P(X, T). This shows that (X, T) is regular.

Tueorem 3.17.  Suppose that X is written as 1/ R, where R is a closed
T-invariant equivalence relation on I and for each t€A(I) there exists
r& 1 such that v=L, and rR=R. Let P(X, xy) be an equivalence relation
on X. Then

(1) There exists p& A(I) such that $|G(X, o) : G(X, 2)—>G(X, zy)
and ¢|G(Y, ) : G(Y, y)—>G(Y, y0) are bijective, and S(X, zp)=
S¢( Y, .yo)*

(2) G(X, 2)=G(Y, ).

(3) I is a proximal homomorphism.

(@) If(X, xo) is distal, then I' is isomorphism, i.e., (X, zq) is iso-
morphic to (Y, o).

Proof. First we show that G(Y, y;) ©S,(X, i) for some ¢ A(I).
For each a=G(Y, ), I'(zex)=yox=yy=1I(zy). By Lemma 2.5 and
(2) of Lemma 3.16, (X, x,) is regular. Hence there exists f& A(X)
such that (f(zea), o) €P(X, zy). Since E(X) contains exactly one
minimal right ideal 1, f(zoa)g=x¢q for all g=I By Lemma 2.4, f is
induced by some L,eA(J), where pel. Then zy=zqu=f(zya)u==
xoLp(a)u=zxoL,(au)=2z¢L (), which implies a€8.,(X, zp). Now let
¢=L, Then

G<X7 xO)CG(Y’ yO)C‘Syﬁ(X’ ‘TO)C‘Sé( Y’ yO)'
By Corollary 3.4, ¢(G(X, 20)) ¢ (S,(X, 20))G(X, x5). As in the
proof of Theorem 3.6 we prove that ¢|G(X, zo) : G(X, 20)—G(X, o)
is onto, i.e., ¢(G(X,20))=G(X, z,). Hence ¢|G(X, z) : G(X, zp)—
G(X, zp) is bijective. Similarly, ¢|G(Y, y0) : G(Y, y0)—G(Y, yo) is
also bijective. But G(Y, y0)=¢(G(Y, v)) CH(34(X, z0)) = G(X, x0),
which implies G (X, z5) =G (Y, yy). Thus S4(X, 29) =84(Y, 3) and so
I" is proximal. Finally we show that /" is an isomorphism if (X, zo)
is distal. Let (X, z,) be distal. Then P(X, z5)=:4. Let y& Y and let
xy, £2€ ' 1(y). Since [I' is proximal, (zy, z,) €~(X, ), and T{=1x.
This shows that I" is one to one, and thus we obtain /" is an isomorphism.
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THEOREM 3.18. For each ¢ A(I), S4(X,zq) is a closed subset of
I, and S4(X, z) is compact Ts.

Proof. First we show that G(X, z,) is closed. Let {a,} be a net in
G (X, z,) such that a, converges to a. Then zya=z; (lime,) =lim z2,
=z, and so a€G(X, z,), which implies G(X, zy) is closed. Now let
acA(I) and {8,} be a net in S,(X, xo) such that 8, converges to 5.
Then lim ¢ (8,) =¢(8), because ¢ is continuous. Since G(X, x,) is closed
and ¢(8,) €G(X, z), 6(B) EG(X, x;). This means that SES,(X, zo).
Thus S4(X, zo) is also closed. It is clear that S4(X, zo) is compact T'.
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