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ON MATRIX NORMED SPACES

Donc-Yun SuiN, Sa-Ge Lee, Cuane Ho Byun anp Sane Oc Kiv

1. Introduction

Let N and C denote the set of positive real numbers and complex
numbers, respectively and let E be a vector space over C. Throughout
this paper let M,,,(E) denote the vector space of mXn matrices with
entries from E, let M, , denote the mXn complex matrices with C*-
norm, and let {E;;} denote the standard matrix units for M,,, that
is, E;; is 1 in the (4, j)—entry and 0 elsewhere. We set M,(E)=M,,,
(E) and M,=M,,,..

For x:[zij:IEMk,l(E)’y:[:yij]EMm,n(E)7 a:[aij]EMs,k and :8:
[.Bij]EMz,n we write x@yZ[g 2j|EMk+m.l+n(E>aax:[zij]EMs,l(E),
and zf=[w;;]€M,,,(E), where z;;=2 %, a;,7,; and w;;= 31 }-; Bp;jZip
Here we use the symbol 0 for a rectangular matrix of zero element
over E.

If for each m,ne N, thereisa norm| : ||, , on M, ,(E), the family
of the norms {|| * || ,}is called a matrix norm on E. E is called a
space with a matrix norm. We set || - |l,=|| - |, »

A space E with a matrix norm is called a matrix normed space if
fOI' aEMﬂ.p7 xEMp.q(E> and ‘BEMq,m! ”ax/s”n,ms”aH”x“p,qH‘BH'

Suppose that E and F are matrix normed spaces and ¢ : E—F is a
linear map. We define the map ¢, : M,(E)—>M,(F) by ¢,([z;])=
[¢(xi)] for [z;;]€M(E). We write |[¢llp=sup {/|¢.l : n€N}. We
call ¢ completely bounded if ||@l|,;<Coe, and completely contractive if
lll<1. We call ¢ a complete isometry if for each neN, ¢,: M,
(E)—>M,(F) is an isometry. Two matrix normed spaces are completely
isometrically isomorphic if there is a complete isometry of the first
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space onto the second.

A matrix normed space E is an abstract operator space or L™matrix
normed space if it satisfies [|2@y||,.,=max {|lz]|,, ii»l,} and an L?-
matrix normed space or L?(1<p<co) if it satisfies 2@yl psn= (x| 2

1
+pll2?
In this paper, we study the fundamental properties of matrix normed
spaces, the relations between matrix norms and norms, and direct sum
of matrix normed spaces.

2.1. Matrix normed spaces

Prorosition 2.1. Let M,(E) be a normed space for each neN.
Suppose that these norms on M,(E) satisfy

(1) For &M, (E) and 0EM,(E), we have |20/ pin=Zlm

(2) For z&M,(E), o, FEM,, we have |azfll, < llallllz|lBl.
For an elemens z€M, ,(E), we define 2|l a=1I[2, 01|, for m>n

[g}l} Sfor m<n. Then (E, {|| - |lna}) is a matriz normed

and ||zll,, ,=

space.

Proof. It is trivial to show that (M, .(E), |l * lln.) is a normed
space. For aeM,, ,, €M, (E), BeM, ,, we consider a@P0, fPOE
M, and 2®0€ M(E), where k=max{m, n, p,q}. Then [a@0][2D0]
[AD0]=azf®D0& M;(E). Hence xS0l <||a@Ollliz@0ll: /AP0
Thus llazgl| < llallllzll,, I8l

In particular, if (E, - |l,,,) is a matrix normed space and if (E,
Il + Ilw») is the matrix normed space constructed from (E, || - Il) in Pro-
position 2.1, then ||« ||, ,=Il - |ln,,. For these reasons we shall often

only assign norms to M,(E) and verify (1) and (2) in Proposition
2.1 to construct a matrix normed space.

Prorosition 2.2. Let (E, {|| * |lm.»}) be a matriz normed space, tEE
and a=[a;;]1€M,, ,. Then Laijxdllm n = lalllizll. In particular, if E is
an abstract operator space, then ||[a;;z]ll, = !zl (¢f. [1, Ezample

2.5D.
Proof. Since a*a>0, there exists a diagonal matrix D= 2 AEg
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with [[@]2=2;>2;>->1,>0 and a unitary matrix UeM, such that
a*a=UDU*. Hence we have la*a[z@ @], =||D[z®---Dz]|,>
Allzll. Therefore |la[z@®++@®x]||m > lalllizll. If E is an abstract ope-
rator space, we have [la [z2@--@z]|l, < llallllll.

Cororrary 2.3. Let (C, {I| - ||,}) be the operator space with the usual
matriz norm, let E be an abstract operator space, and let f: C—E be
a contraction. Then ||f|l=I|f].

THEOREM 2.4.  Let (E, {|| - llm.A}) be a matriz normed space, a=
la;;]€M,, , with rank a=1 and xS E. Then e jx |, n= el ]},

Proof. Since rank a=1, there exist ki, -+, &, ay, ++, a,&C with a=
L4y, -+ knltLay, -+, a,]. By elementary calculation, lall=1Lk1, =, k]l
Ilay, -+, a,Jll. Since [ay;a]="[ky, -+, ky)t[ay, =+, a,] (2@ @x]=[ky, +-,
km]t[alxs ) anx:l’ we have ”[aijx:mm,ngn[kh "t km]””[‘hx’ Y an-rj”l, n
Since [dl.T, ) anx] :I[dl, ] d,,], H[dll‘, "t anx]”l,nS HxHH[als ) an]”'
Hence we have [|[@;;z]ll,.,.=lla|/llz]| by Proposition 2. 2.

Remark 2.5. Let E be a space with a matrix norm with i,
== :n:l Zj”:l ”xull fOI‘ eaCh [.Z‘,-J-]EM,,E,,,(E). Siﬂce ”Z,mzl Z;:l E,ij:
mn||z||, E is not a matrix normed space.

THeoREM 2.6. Let E be a matriz normed space and x;;€ My, 1, (E).
Then ”[xij:]”s,tgH[”xijnk;lj]H Sfor each [x;;]€ M, ,(E) where s=k+ -
+ky and t=11+-+1, if and only if E is an abstract operator space.

Proof. (<) We may assume that E=B(H) for some Hilbert space
[7, Theorem 1.21]. Note that

oz x| & KN [
............... ol |
|
t

_Tml " Ty _En_  m_|,
=15 BCeatslnd| <5 Sleal 151 In)
'-Han ||$1nH~ ‘Hflif A”771H_
=\l
Lzmall= Izl | Heal | L limall U,
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where ¢;€H*% and 7€ H'. Hence |[[2;];, < ||[llzi;l1 711
(=) Suppose E is not an abstract operator space. Then there are
rE€M,(E) and yEM,(E) such that |2®yllmis>max{|zll, llyll}. But

[5 1< ot . s i

to the choices of z and y. Hence WLz U, . <|ICllx;;11 )l implies that E
is an abstract operator space.

2@l msn=

3. Constructions of matrix norms

For each p(1<p< o), we define || - ||, on M, by llzll, .= (tr(z#))?
for 1<p<lco and |||« ,=!|zll, where ¢r is the canonical trace on M,,
and || - || is the usual operator norm on M,.

Let (E, || - |]) be a normed space. Then Q=(E*),, the closed unit
ball of E*, is a compact Hausdorff space with respect to w*-topology.
Then z(f)=(x, f) gives an isometric injection E—C({)), where C
(Q) is the C*-algebra of all complex-valued continuous functions on
Q with the sup-norm.

For a a=[z;,]eM,(E), define llzll,=sup (I[/Cz:)llyn: FEQ,
I£l1=1}. Since (C,| - ll,.) is L?, (E, {,I| - li,}) is an L? matrix nor-
med space.

Prorosition 3.1. Let E be a matrix normed space, let Q) be a locally
compact Hausdorff space, and let f: E—Cy()) a bounded linear map.
Then ||flle=IfIl.

Proof. The same as the proof of [5, Proposition 3.7 and Theorem
3.8].

ProrosiTion 3.2. Let A and B be C*-algebras. I1f ¢ : A—B is posi-
tive and completely contractive, then @ is completely positive.

Proof. If A and B are unital, then it follows from [5, Proposition
3.4]. For non-unital A and B, let A®C and B@C be the unital C*-
algebra obtained from A and B by the adjunction of an identity,
respectively. If a+AI is positive, then there is an element 4+uc A
@C with a+AI=+ul)*(b+pul), and i=|x|2>0. Define ¢ : AQC
—B®C by @(a+Al) =¢(a)+AI. If a+AI>0, then a~ <Al Since ¢ is
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contractive and positive, ¢(a~) <AI. Hence —¢(a)=¢(a)—p(at) <,
so ¢ is positive. By [5, Proposition 3. 4], @ is completely positive.

Let 6(n) be the transpose map in M,. Then the norms of the mul-
tiplicity maps 0(n), are ||0(n);||=% if k<n and NO(n)pl|=n if B>n [8,
Theorem 1. 2].

Lemma 3.3. Let A be a C*-algebra and 6(2, A) the transpose map
in My(A). Then A is non—commutative if and only if [6(2, A)|=2.

Proof. (&) Suppose that A is commutative. Then ||6(2, A)|=1.

(=) Since A is non-commutative, there is an irreducible representa-
tion {¢, H} with dim H>2. Since ¢yotr (2, A) =¢r(2, B(H))o¢, and
0C2, M,)||=2for n>2, ||6(2, A)l|=2.

Let (E, {ll - Il.}) be a matrix normed space. Define new matrix norms
on M,(E) by «ll[z;]ll,=sup{ll[ f(z:;)]Il : f€ (E*)1} and ~||[z;;]]l,=
sup {ll[¢(z;;)1ll.}, where the supremum is taken over all Hilbert
spaces I and all contractive linear maps ¢ from E to B(H). Since fe
(E*); is completely contractive, ol L2 11, < I[2:i7ll.. Hence the matrix
norm {u| -|,} is the minimum of all possible matrix norms on E.
Clearly (E, {~Il - Il,}) and (E, {.]| - Il.}) are abstract operator spaces,
and {*| - |l,} is the maximum of all possible norms which make it an
abstract operator space. Since for any matrix norm {3 10l <
2aii=1 sl Nzl =sup {{|[z;;]ll, : E is a matrix normed space with
{I - Il.}} is the maximum matrix norm which makes E a matrix nor-
med space.

THeorREM 3.4. Let A be a commutative C*-algebra. Then the usual
matriz norm on A is the minimum matriz norm making A a matriz
normed space, but for any non-commutative C*-algebra A the wusual
matrix norm is not the minimum matriz norm making A a matriz normed
space.

Proof. First suppose that A is commutative. Then we may assume
that A=Cy(Q) for a locally compact Hausdorff space (). Put E=A
with a matrix norm which makes A a matrix normed space and
Co(Q2)=A with the usual norm. By Proposition 3.1, the usual matrix
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norm on A is the minimum matrix norm on A.
Now suppose that A is not commutative. Then the transpose map
0(2, A) : M,(A)—M,(A) is not contractive by Lemma 3. 3. By elemen-

tary calculation, (A, {4l - Il,}) is a matrix normed space, where ,||z|l,
=|tzll,. It is trivial to show that if (E, {|| - |l,}) is an abstract
operator space then (E, {4|| - ||,}) is an abstract operator space. Hence

the usual matrix norm on A is not the minimum matrix norm on A.

THeOREM 3.5. Let A be a C*-algebra. Then A has only one abstract
operator space structure if and only if A is at most two dimensional.

Proof. (<) By [9, Proposition 3.1 (b)], «ll[z:]ll,="l[z;]ll» for
each [z;;]eM,(A). Hence A has only one abstract operator space
structure.

(=) Suppose that A is at least three dimensional. Then by [9,

Proposition 3.1 (b)], «ll[i;]lla#=I[zi;]ll,. Hence A has at least two
abstract operator spaces structure.

Let 1,2={[ay, -+, a,)? : ay, **+, a,€C} be a Banach space with a norm
plllay, = a2 =|ay| 2+ -+ |a,|2. Considering «=M, as a linear

transformation from [,? to [,9, we define a new norm , /- |l, on M,.
Prorposition 3.6.  (C, {, Il - ll.}) is a matriz normed space if and
only if p=qg=2.

Proof. (&) Clear.
(=) By Theorem 2.4,

O

:

CoroLLaRY 3.7.  The norm || |, on M, defined by |l .=

elementary calculation,
b g

Thus p=g¢=2.

(tr(IxIP))% is an operator norm from L2 to 13 for 1<p,q<cc if and
only if (p,q)=1(2,2).

ProrosiTioN 3.8. Let E be a normed space. Define a norm || - ||, on

M, (E) oy Wlzidlla=WClzsll 0. Then (E, {ll - l}) is not a matriz
normed space.
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Proof. Suppose that E is a matrix normed space. Then for z&
Mn(E) and yeM,(E), we have |z®yll s, =max ||zl llyll,}. Let u=
LIT =1L Then w=l, so lule@zlle=llz®cl,=]zl. But

V2
-% E ﬂ 22%“{1 i}” llzll= 42 ||z|| by Theorem 2.5, a con-
tradiction.

4. Direct sum of matrix normed spaces

Dermnition 4.1. Let (E, {{] - |I}) and (F, {|| - I|.}) be matrix normed
spaces. Put EQ,F={z@,y: z€E, y&F} with a norm [|z@®,yl|= (||z|?

+ llyll£)? for 1<p<loo and ||l2@®,yl|=max {||zl|, [|¥]]} for p=oo. Iden-
tifying Mn(E@pF) with *Mn(E)@pMn(F> via [iij@pyij]:[[fij]@p
[v:;0), (E@,F, {ll - ll,}) becomes a space with a matrix norm. We
call E@,F the p-direct sum of E and F.

TueoREM 4. 2. (E®@,F, {|l - |l.}) is a matrix normed space. Further-
more if E and F are L?, then ED,F is L?.

Proof. Since Exij@pyij]@():[[xij]@()]@p[[yij]@()] for [xij®pyij:|
@OEM 1 (ED,F), we have |[[2;;®,y:;1B0msn=1[2:;]P s3]l me
For a=[a;;], B=[B;]E€M,, z=[z;;]eM,(E) and y=[y;]€M,(F),
we have |la[z;;®,y;;18ll,= lazBD payBll. < llall [|5:] lz®pyll.. Therefore
E®,F is a matrix normed space.

Let E and F be L? for 1<p<loo, [2;;®,yi;]€M(EDF) and [zy
Dpwnl € MJ(ED,F). Then |[[z:;D ;1D 2@ pwplmsn = ([ 2:;1®

1 1
Cza 112+ 1Ly 1D LwrJ 1) % = (N Lz ;@ oo 12+ Lea@ prons 1112)?. . Hence
E®,F is L?. In case that E and F are abstract operator spaces and p=
oo, similarly it can be shown that E®.F is an abstract operator space.

Prorosition 4.3. Let E, F, and G be non—zero matrix normed spaces.
Then the following are equivalent:
(1) E@,F and EDF are completely isometrically isomor phic.
(2) E@,F and FOLE are completely isometrically isomor phic.
(3) (ED,F)DG and ED,(FB,G) are completely isometrically isomor-
phic.
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@ p=q.

For a matrix normed space E, we define the left dual of E,E* to
be the dual of E together with the norms on M,(E*) obtained by
identifying M,(E*) with B(M, (E), M, 1). It is easy to check that
E is a matrix normed space with this matrix norm.

ExamrLe 4.4. Let E:”:g g}] oz, yGC} with the wusual operator

norm, F be the left dual of E. Then by elementary calculation, we
show that F is not decomposed into p-direct sum.

Let E be a matrix normed space. There are two natural ways to
identify M,(E*) with M,(E)*. The first way is defined by ([=;;],

[ f"f]):-illcx‘f’ fi). We denote this dual space ;E*. Another way is

defined by ([=;;], [£i;1) :.-:-.‘V-'_‘fxij’ fi). We denote this dual space ,E*.

We know that these dual spaces are matrix normed spaces [7, Proposi-
tion 1. 1.6 and Appendix].

Tueorem 4.5.  Let E and F be matriz normed spaces. Then ;(E@ ,F)*

1. 1_
+q—~1,

is completely isometrically isomorphic to E¥DgoF*, where »

1<p,q and a=1 or 2.

Proof. Define ¢ : E¥@oF*—,(EDF)* by (¢(fP,8)) (2@ ,y)=
f(x)+g(y) for fe E* g€, F* zcE and ycF.
Case 1. 1<p,q< oo : Note that for [fi7Dqgij] € My(GE*D o F*),
a||¢n([ﬂj@qgij])||n
=sup {| @, ([ fijD,2:; 1D ([2:@py5; D | + 1[2:;®Ppyi;11,=1}
=sup{|([z;], [fiyD+Loi]s LD 2 Nz Q122+ 1051112, =1}
:Sup{au[fij]lln”[-rij]”n+a;”[gij:|”u”[yij]”n Sz a4+ Dyl =1}
=CallLfi;a94 ol LM 7.
Hence ¢ is a complete isometry.
Case 2. p=1 or p=oo: By the same way, it holds.
In the classical functional analysis, we know that if (E,|| -] is a
normed space and E, is a closed subspace of E then the quotient space
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—g— with the quotient norm.
0

Now, suppose that (E, {|| - |l,}) is a matrix normed space and that
E, is a subspace of E which is closed under the norm | - ||;. Then
each M,(Ey) is closed in M,(E) under the norm | - ||, Identifying

M, (%()—) with %, we may let M,,(—é%) have the corresponding

quotient norm | - |[,. It is known that -—g— is a matrix normed space

0
[7, Theorem 1.1.8].

Prorosition 4.6. Let E and F be matriz normed spaces, and let E,

and Fy be closed subspaces, respectively. Then M is  completely
EyD,F,

isometrically isomor phic to i@i,i.
E, Fy

ED,F —— -
Proof. Define ¢ : 280 E-®, - by $(7&2)=@z. Then

clearly ¢ is well defined.
Note that @,([z:;;D,8:;1)=[2;1®,[5:;]. Hence |[z;@,3:;]lla=
— R 1

Nz 1A+ 1w, 02)?. Therefore ¢ is a complete isometry.

*
Remark 4. 7. ( (ED,F) ) is completely isometrically isomorphic to

(Eo®,Fy)
* *
<%@ p%—> and <—§-—®P—£—) is completely isometrically isomorphic
0 0 0 0

to (—E;) *@q <—£—> *, where % %21. Hence (%%%33—)* is com-

. . . . E \* F \*
pletely isometrically isomorphic to (———) Ch <—> .
E, Fy

References

1. D.P. Blecher and V.I. Paulsen, Tensor Products of Operator Spaces,
(Preprint).

2. M.D. Choi, Positive liner maps on C*-algebras, Canad. J. Math. 24
(1972), 520-529.

— 111 ~—



Dong-Yun Shin, Sa-Ge Lee, Chang Ho Byun and Sang Og Kim

C.K. Fong, Heydar Radjavi and Peter Rosenthal, Norms for matrices
and operators, J. Operator Theory 18(1987), 99-113.

R.I. Loebl, Contractive linear maps on C*-algebras, Michigan Math. J.
22(1975), 361-366.

V.1. Paulsen, Completely Bounded Maps and Dilations, Pitman Resarch
Notes in Math., Longman, London, 1986.

Z.]. Ruan, Subspaces of C*-algebras, ]. Functional Anal. 76(1988), 217-
230.

Z.]. Ruan, On matricially normed space associated with operator algebras,
Ph. D. thesis, University of Califonia, Los Angeles (1987).

J. Tomiyama, On the transpose map of matriz algebras, Proc. Amer.
Math. Soc. 88(1983), 635-638.

J. Tomiyama, Resent development of the theory of completely bounded
maps between C*-algebras,

Seoul National University
Seoul 151-742, Koreas,
Chonnam National University
Kwangju 500-757, Korea
and

Hallym University
Chuncheon 200-702, Korea

— 112 —



