Isolation of a New Phenylpropanoid from Codonopsis ussuriensis

Ihn Rhan Lee and Eun Kyoung Seo

College of Pharmacy, Ewha Womans University. Seoul 120-750, Korea (Received July 27, 1990)

Abstract \square A new phenylpropanoid was isolated from the roots of *Codonopsis ussuriensis* (Rupr.et Maxim) Hemsley. It was colorless crystals, mp. 140-142°C and was elucidated as 4-(3-ethoxy-1-propenyl)-2,6-dimethoxyphenyl- β -D-glucopyranoside on basis of spectral data analysis.

Keywords \square *Codonopsis ussuriensis*, Campanulaceae, 3-ethoxy-syringin, 4-(3-ethoxy-1-propenyl)-2,6-dimethoxyphenyl- β -D-glucopyranoside.

Codonopsis ussuriensis (Rupr. et Maxim) Hemsley (Campanulaceae) is a plant belonging to the same species as C. pilosula and C. lanceolata, and those pharmacological actions and components have been studied extensively by several researchers¹⁻⁶⁾. We have previously reported that an ether soluble fraction of the plant showed an increase in red blood cell number⁷⁾.

In this paper, the chemical structure of a new phenylpropanoid (Compound I) isolated from nbutanol fraction was studied.

EXPERIMENTAL METHODS

Instrumental

Melting point was recorded on a Thomas* Hoover capillary melting point apparatus. HPLC were done by Waters Associates Liquid Chromatograph and detected by Waters 441 UV 254 nm. ¹³C-NMk and ¹H-NMR spectra were obtained on Bruker AM-300 spectrometer using TMS as an internal standard. IR and UV spectra were measured on a DIGLAB FTS-80 FT-IR and Shimadzu UV-visible recording spectrophotometer UV 240 Graphicord, respectively. Mass spectra were taken on JEOL-DX 303 Mass Spectrometer, JEOL JMA-DA 5000 Mass Data System.

Isolation

Codonopsis ussuriensis was collected in July (1988) at Kwang Neung, Kyungkido, Korea. Dried root (1.2 kg) was extracted with methanol (30 l) (4 h, 3 times). The methanol extract was evaporated in vacuo and fractionated with diethylether and then n-butanol.

TLC chromatogram of the n-butanol fraction on

a silica gel plate (CHCl₃: CH₃OH: H₂O = 64: 50: 10) revealed seven spots upon vanillin sulphuric acid spray (Rf = 0.79, 0.68, 0.62, 0.56, 0.43, 0.33, 0.15). When it was subjected to column chromatography on silica gel (Merck, 7734) with a solvent system of chloroform and methanol (gradient), compound I was obtained at CHCl₃/MeOH (10:1), detected by TLC (CHCl₃: CH₃OH: H₂O = 64: 50: 10, Rf = 0.56, detector: UV and vanillin sulphuric acid spray). And the purity of compound I (T_R 6.869) was checked by HPLC system utilized Spherisorb reversed-phase C_{18} column (particle size 5 μ ,15 cm×3.9 mm ID) and mobile phase with 30% methanol in water. The flow rate was 1.0 ml/min.

Compound I

Colorless crystal, mp. 140-142°C; UV λ_{max} (EtOH) nm 230, 265; IR ν_{max} cm⁻¹ 3560, 3387, 3309, 3030, 1650, 1589; ¹H-NMR (CH₃OH-d₄) δ (ppm) 1.31 (3H, t, J=7.3 Hz, -OCH₂CH₃), 3.20 (2H, q, J=7.3 Hz, -OCH₂CH₃), 3.86 (6H, s, 2×OCH₃), 4.21 (2H, dd, J=4.3 and 1.2 Hz, -CH=CH-CH₂), 4.87 (1H, d, J=7.4 Hz, anomeric H), 6.33 (1H, dt, J=15.8 and 4.3 Hz, -CH=CH-CH₂), 6.55 (1H, dt, J=15.8 and 1.2 Hz, -CH=CH-CH₂), 6.75 (2H, s, aromatic 2H); ¹³C-NMR (CH₃OH-d₄) δ (ppm) Table I; Mass (EI) 210, 192, 182, 167, 149, 86 (CI) Reagent gas: methane 210, 193, 182, 167, 149, 86 (FAB) 395, 382, 167.

RESULTS AND DISCUSSION

Compound I was colorless crystals and its melting point was 140-142°C. The presence of aromatic group was shown in UV ($\lambda \frac{EIOH}{max}$ 265 nm) and IR

Table I. ¹³C-NMR data of compound I comparing with that of syringin

Carbon Number	Compound 1	Syringin ⁸⁾
1	63.6	63.6
2	135.2	135.2
3	131.2	131.2
4	130.0	130.0
5, 9	105.3	105.3
6, 8	154.3	154.3
7	135.8	135.8
1'	105.2	105.2
2'	75.7	75.7
3'	78.3	78.3
4'	71.3	71.3
5'	77.8	77.8
6'	62.5	62.5
OCH ₃	57.0	57.0
OCH ₂ CH ₃	9.2	_
OCH_2CH_3	47.9	-

spectrum (3030, 1650, 1589 cm⁻¹). In ¹H-NMR the signal of 3.86 ppm (6H) indicate the two symmetrical methoxyl radicals which are bonded to benzene ring directly. Thus, compound I has an aromatic group which two methoxyl radicals are bonded symmetrically. In ¹H-NMR spectrum the multiple peak of δ 3.43-3.82 ppm and the anomeric proton peak (δ 4.87, d, J = 7.44 Hz) reveal the presence of sugar. The hydroxyl radicals of sugar were shown in IR spectrum (3560, 3387, 3309 cm⁻¹). ¹H-NMR spectrum showed the signal of two symmetrical protons at δ 6.76 (s, 2H). And the signals of δ 4.21 (dd, J=4.26 Hz, 1.20 Hz, 2H), 6.33 (dt, J = 15.84, 4.26 Hz, 1H), and 6.55 (dt, J = 15.84, 1.20 Hz, 1H) indicate the presence of (-CH = CH -CH₂O-) group. From the J value, we can predict that the proton 1 and 2 have trans type.

Thus benzene ring of compound I has sugar linked by β position at C-1, propenyl radical at C-4, two symmetrical methoxyl radicals and protons at C-2,6 or C-3,5. And the ethyl radical which is appeared at δ 1.31 (t, J = 7.30 Hz) and δ 3.20 (q, J = 7.30 Hz) of ¹H-NMR is attached to 3 position of propenyl radical by ether type.

From the above findings, we expected that the structure of compound I should be similiar to that of syringin⁸ except ethyl radical. Therefore the spectral data of compound I was compared with the standard of syringin simultaneously. In ¹H-NMR and ¹³C-NMR (Table I), compound I and syringin have the same spectra except ethyl radical signals of compound I. In HPLC, compound I showed a peak at 6.069 min while syringin showed a peak at 6.162 min, and IR spectra of them have similiar signal bands.

From mass spectra, molecular peak could not be found, but EI and CI spectra showed m/z 210 base peak. However, the numbers of carbon and proton were determined from CMR and PMR spectra. Therefore by the comparison with the spectral data of syringin, compound I is elucidated as 3-ethoxy syringin, 4-(3-ethoxy-1-propenyl)-2,6-dimethoxyphenyl- β -D-glucopyranoside, $C_{19}H_{28}O_{9}$ (MW = 400).

ACKNOWLEDGEMENT

This study was supported by the grant from the Research Institute of Pharmaceutical Sciences, Ewha Womans University and we wish to thank Dr. Lhung M.H. (KRICT) for spectral analysis.

LITERATURE CITED

- Kim, Y.H. a d Lee, I.R.: Triterpenoids from Codonopsis pilosula, J. Pharm. Soc. Kor. 28, 179 (1984).
- Lee, I.R., Kim, Y.H. and Park, S.B.: Sterols and steryl glycosides from the root of *Codonopsis* pilosula, Kor. J. Pharmacog. 13, 129 (1982).
- 3. Lee, I.R.: A phytochemical study on components of *Codonopsis pilosulae* Radix, *J. Pharm. Soc. Kor.* 22, 1 (1978).
- Han, S.Y., Sung, S.C., Han, B.H., Kang, S.S. and Woo, W.S.: Sterols and triterpenoids from Codonopsis lanceolata, J. Pharm. Soc. Kor. 19, 209 (1975).
- 5. Han, B.H., Kang, S.S. and Woo, W.S.: Triterpenoids from *Codonopsis lanceolata*. *J. Pharm. Soc. Kor.* **20**, 145 (1976).
- Jung, B.S. and Nah, D.S.: Studies on the terpenoid component of the roots of Codonopsis lanceolata Benth. et Hook., Kor. J. Pharmacog. 8, 49 (1977).
- Lee, I.R. and Kim, W.R.: A study on physiolosical activity of Codonopsis ussuriensis Tuber. Kor. J. Phamacogn. 20, 215 (1989).
- 8. Chung, B.S. and Kim, Y.H.: Studies on the constituents of *Acanthopanax koreanum*, *Kor. J. Pharmacogn.* 17, 62 (1986).