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I . INTRODUCTION

A main component of transportation plan-
ning and policy analysis is the prediction of
the future performances and impacts on the
transportation system for each of the avail-
able plans or policy alternatives.

Disaggregate models which have advan-
tages over traditional approaches based on
aggregate models have been developed for the
travel demand prediction. In the modeling of
travel demand, disaggregate models allow us
to consider the individual’s attributes that in-
fluence on the travel behaviour and to make
more efficient use of available individual data.
However, applications of those models to
transportation planning are limited : they are
usually applied to the local and short-term
transportation planning, or used in the frames
of traditional 4-step travel demand forecasting
models by replacing some of those steps. That
is, there have been few attempts to develop
and apply disaggregate travel demand model
systems for predicting travel demand in me-
tropolitan areas.

This paper develops a disaggregate model
system in a metropolitan area. And its empiri-
cal tests have been done for Nagoya me-
tropolitan area. In formulating the model, we
attempt to develop the model that can logi-
cally represent individual travel behaviour and
is also an operational model, as much as
possible.

The model developed in this paper incorpo
rates trip generation choice, destination choice
and mode choice for non-woker travel into a
utility maximizing framework by using the
concept of travel tours under the assumption
that the decisions of a trip in a tour depend on
the decisions of trips conducted theretofore
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and the decisions of trips planned thereafter,

as well as on the current trip conditions.
I . PRIOR WORK

Travel demand forecasting is an essential
element in the analysis of transportation sys-
tem. Significant advances have been made in
applying
behavioural demand models to many aspects

developing  and disaggregate
of urban travels.

As a study against to traditional approaches
for the metropolitan transportation planning,
MTC model based on disaggregate travel de-
mand modeling approach has been developed
(Ruiter and Ben-Akiva, 1978). The com-
ponents of the MTC model system are largely
classified according to the aspect of time(long-
run, short-run)and the level of trip-making de-
cision(developer, household, individual). Then,
the modeling system of travel decisions deals
separately with homebased and non-home-
based trips. This simplifies the representation
of trip chains. However, MTC model system
can not completely consider interrelationships
among trips.

On the other hand, it has been assumed that
there are interrelationships among trips made
by an individual. Accordingly, some studies
are performed by explicitly considering the
trip chaining behaviour.

Adler and Ben-Akiva(1979) described a
utility maximizing model for a household’s
choice of a daily travel patterns which are de-
scribed by the number and characteristics of
destinations chosen for non-work activities,
the mode used to travel to those destination,
and by the number of tours used to travel to
the set of destinations during the day. How-

ever, a household has, in principle, infinite
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possible patterns which are the alternatives.
From this reason, in this model, the household’
s alternative set for estimation was con-
structed by using the chosen travel patterns of
other households.

Lerman(1979) tried to synthesize two di
fferent analysis methodologies, disaggregate
choice models and semi-Markov process, to de-
velop an operational, policy sensitive model of
non-work trip chaining. The model permits
multi-destination travel but treats choices of
travel frequency out side of the utility maxi-
mizing behavioural framework. Moreover, this
model requires the simplifying assumption that
current travel decisions are independent of
past travel decisions or future travel plans.

Horowitz(1979, 1980) developed a struc-
tural model of demand for multi-destination
non-work travel, which is based on the prin-
ciple of utility maximization. The model incor-
porates travel frequency, destination choice
and mode choice for both single and multi-de-
stination and incorporates the concept that
current travel decisions may depend on past
travel decisions and future travel plans. The
model estimates firstly, the expected value of
total daily person trips to nonwork de-
stinations other than home by defining a time-
integrated utility of travel from i to j by mode
m. Then, travel frequency and destination cho-
ices are carried out within that bounds. In the
model, the effects of past travel decisions and
future travel plans, for making current de-
cisions, are represented as considering the
bounds which are the expected trip numbers
of total daily person trips. However, the model
does not thoroughly consider the direct effects
of the trips before and after on current trip.

Kitamura(1984) developed a model of de-

stination choice employing "prospective utility
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of a destination zone as its attraction
measure. The prospective utility accounts for
future dependency of destination choice and
makes possible relevant treatment of in-
terdependent choices in a trip chain. However,
the model treats only destination choice.

Recently, travel demand modelers have
attempted to derive models of travel demand
from an underlying theory of activity schedul-
ing behaviour which consider the in-
terrelationships between activities and travels.
This approach treats travel as a derived de-
mand and analyzes the interrelationships
between activities and travels under the tem-
poral and spatial constraints.

Damm and Lerman(1981), Damm(1984)
formulated a theory of activity scheduling for
urban workers. This model conducts the
choice of each worker that whether or not to
participate in an out-of-home, non-work ac-
tivity in each of five blocks of time defined
around their obligatory trip to work, more-
over, the chosen duration of participation is
analyzed, conditional on the decision to par-
ticipate in any particular time. However, there
are still no operational model that directly

links choice of activities with trip making.

H . THE ANALYSIS ON ACTUAL DATAS
OF NON-WORKER’S DAILY TRAVEL

In this study the data of non-workers who
live in Nagoya City, which is obtained from
the person trip survey in 1981 for the Chukyo
Metropolitan Area of Japan. Let us see the
actual datas of non-worker’s daily travel be-
fore we examine the models. Table 1 gives the
aggregated results at present for trips and
tours in a day. It will be known from this

table that the percentage of the people have
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Table 1. , The aggregated results of trips and tours in a day for non-workers
trips number (A)persons (B)persons trips (B)/(A)
per day number number number (%)
0 8130(39.0) — - -
1 101( 0.5) - 101( 0.3) -
2 7734(37.1) 7703(61.5) 15468(41.0) 99.6
3 1010( 4.8) 995( 7.9) 3030( 8.0) 98.5
4 2227(10.7) 2211(17.7) 8908(23.6) 99.3
5 529( 2.5) 521( 4.2) 2645( 7.0) 98.5
6 641( 3.1) 635( 5.1) 3846(10.2) 99.1
7 202( 1.0) 200(¢ 1.6) 1414( 3.7) 99.0
more than 8 283( 1.4) 251( 2.0) 2348( 6.2) 88.7
total 20857(100.) 12516(100.) 37760(100.) 98.3
{Note)

(A) : The number of persons including trip-maker who do not make any tour

(B) : The number of persons making tours

no trip is 39.0%, and 37.1% of the total have
two trips in a day. Among the people who
have at least one trip during a day, 98.3% 6f
them make tours, and the people who did not
make any tour are not over 1.7%. Table 2 il-
lustrates the percentage using same mode in a
tour. From this Table, it will be known that
the percentage of the tours with the same
mode in a tour is 94.4% of the total tours.
From the aggregated results of Table 1 and
Table 2, it will be known in case of excluding
the people who have no trip, the average
number of trips one person made in day is 2.
97, and the average number of tours is 1.35.
Furthermore the average number of trips in a
tour is 2.20.

In Figure 1, the percentage of tours with
same mode in a tour are shown by different
modes and the number of trips in a tour. From
this Figure it can be known that the per-
centage of tours with same mode is generally
as smaller as the number of trips in a tour
gets more. By the travel mode, it is found that
in cases of walking, two-wheeled vehicle(bi-

cycle and motorcycle), transit and taxi, same
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Figure 1 The percentage of tours with same

mode in a tour by different modes
and the mumber of trips per tour

with the total case, there is a tendency that
the percentage of tours by same mode is get
ting as smaller as the trips number in a tour
in case of car, is

gets more, whereas
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oppositely getting bigger.

Next, from Figure 2, the ten sequential
order aggregated result for travel tour pattern
of trip ma ker, it is known that the persons
making the piston tour pattern is 61.5% of all
persons making tours, and the other patterns
aré also combined by the tours with 2 or 3

trips.

1180 \
e ()18 ( \\Qg%)
.9)

(61.5) ° ™

6 a
/ / (0/‘ / ‘\y)
N 246
B Y 0 N /
9 R 2 10 o} home
117 N\ / ax A : destination

62 The ten sequential order is
2 (0.5) 91-3% of the total

The tour patterns of non-worker’s
trip in a day

Figure 2

IV. THE STRUCTURE OF THE MODE. SYSTEM

Disaggregate models have been formulated
from the concept of random utility, which
assume that individuals’ decisions about avail-
able alternatives are determined by selecting
the alternative that has the highest utility. In
this study, we assume that individual beha-
viour éan be explained by using the utility
maximizing theory. Accordingly, for for-
mulating the metropolitan travel demand fore-
casting model, we apply disaggregate
behavioural model. '

Generally, in individual travel patterns dur-
ing a day, there are two different types : non-
worker’s pattern and worker’s pattern(see
Figure 3). Non-worker’s case only consists of
home-based tours which have one or more de-
stination, while worker’s case consists of
home-based tours and work-based tours.
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Most non-worker trlps differ from worker
trips in several aspccts. Firstly, they are
characterized by a large degree of sub-
stitutability among alternatives. Secondly, the
non-worker trip pattern is substantially more
complex than that of worker trips. Finally,
trip frequency is far more likely to be respon-
sive to changes in the level of service provided
by the transportation system than that of
worker trips.

In this paper, we focus on non-worker
whose daily travel pattern largely varies from
the degree of substitutability. We assume that

an individual does not independently make

Table 2. The present states for non-workers
using the same mode in a tour( %)

(A)trips | (B)tours | (C)tours | (D)total
number number number number
2 14,322 208 14,540
(98.6) (1.4) (100.)
(89.5) (22.0) (85.8)
3 1,291 402 1,693
(76.3) (23.7) (100.)
( 8.1) (42.6) (10.0)
4 290 201 491
(59.1) (40.9) (100.)
(1.8) (21.3) ( 2.9
5 56 89 145
(38.6) (61.4) (100.)
( 04) ( 9.4) ( 0.9)
6 17 28 45
(37.8) (62.2) (100.)
(0.1) ( 3.0) ( 0.3)
7 7 111 18
(38.9) (61.1) (100.)
( 0.0) (1.2) (0.1)
8 3 5 8
(37.5) (62.5) (100.)
( 0.0) ( 0.5) ( 0.1)
total 15,996 994 16,940
(99.4) ( 5.6) (100.)
(100.) (100.) (100.)

{Note)

(A) : The number of trips made during a day

(B) : The number of tours using the same mode in a tour
(C) : The number of tours using the dfferent mode in a tour
(D) : The total number of tours
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trip decisions without considering the in-
terrelationships that may exist among choices
made by an individual for a series of trips but
does trip decision-making with consldering the
interrelationships. Therefore, for applying dis-
aggregate behavioural model, we should define
the concept for decision-making in individual
daily travel behaviour.

There may be three alternative hy-
ptheses :

.Hypothesis—1 : a utility maximizing frame-
work over daily travel behaviour.

"Hypothesis—2 : a utility maximizing frame-
work for each tour.

Hypothesis—3 : a utility maximizing frame-
work for each trip which makes a tour.

The first hypothesis assumes that trip
maker maximizes his utility for whole a day
and there are interrelationships among trips.
The second one assumes that when an indivi-
dual does decision-making, he takes utility
maximizing for each tour and there are no in-
terrelationships but sequence among tours,
and the tour which has the higher degree of
importance will be determined prior to other
tours. The result of this behaviour will be one
of the conditions for the utility maximizing of
next tours. The third one assumes that an in-
dividual maximizes his utility for each trip and
there are no interrelationships among trips.
But it is just like hypothesis—2 that there
exists a sequence characteristic. That is, the
trip which is considered to be important is de-
cided firstly, then considering it as one of the
conditions, a traveler will maximize his utility
for the next trip.

Which of the three hypotheses mentioned
above are reasonable as the decision-making
principle of individuals’ travel behaviour de-
pends on how many future trips will be con-

sidered and how much information for the
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alternatives of future trips will be obtained in
making travel behaviour. Hypothesis—1 is
overestimating individuals’ planning ability for
daily travel behaviour. On the contrary, hy-
pothesis—3 is underestimating it.

Therefore, in this study, we adopt hyothesis
—2 which is the utility maximizing for each
tour. As the structure of the model, nested
logit model is used to avoid a simultaneous
model’s complexity caused by a large number
of alternatives that a traveler faces in making
his travel decision, while the model represents
simultaneous decision-making process. From
this, the model incorporates the concept that
decisions of a trip in tours depend on decisions
of the trips conducted theretofore and de-
cisions of' the trips planned thereafter, as well
as on current trip conditions.

For doing decision-making of the trip de-
parting from home in a tour, we can not
assume that individual takes account of all
trips which make a tour, so we amend an indi-
vidual behavioural hypothesis as follows :

A traveler maximizes his ulility by each trip in
a tour, conditional on the trips conducted
theretofore, by considering the conditions of irip
chains returning his home which consist of L
trips al mosi.

While we can set any value for the value of
L, by considering the actual state of using
data and the practical aspect of model we will
adopt the value as 2 in this study. Figure 4
illustrates the structure of decision tree in a
tour used in this model. The model presented
here incorporates trip frequency, destination
choice and mode choice. We assume that
travelers do not change the modes during
tours, so that the mode used in a tour is same

during the tour.
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V . FORMULATION OF THE MODEL function cannot be observed or measured, so
that in practice the utility function(U) of
alternative i is typically represented by a de-

1. General formulation of disaggregate o ) )
terministic portion(V) and a random portion

model
(¢) and the deterministic portion is specified
Most disaggregate models have been for- as lineardinparameter function of the
mulated from the concept of random utility explanatory variables. That is,
which assumes that an individual always se-
lects the alternative with the highest utility. Un= Vinb i woeeeeessnesssenimenenee 1)
However, it has also been explicitly recognized = %‘ B X+ €im

that all the important components of utility

O : home I : home-to-work trip chaining
® : work 1 : work-based tour
A ' destination IV : work-to-home trip chaining
I : home-based tour(before work) V : home-based tour(after work)
AT, V|
[ ]
I v
OCA 1 8] o7  aAv
h A W
(a) Non-Worker (b) Worker
Figure 3 The typical travel behavioural patterns
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. - /N continue  the £th tri
* The dotted lines indicate the effect ;;eturn / Mtravel p]
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of the lower level on the upper level ’_/ _;_ rdestination
* — means a sequence of trips return

home ¢

Figure 4 The structure of decision tree in a tour
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where X, is kth characteristic of alternative i
for individual n
"B is kth unknown parameter
The probability that any element i in the
feasible choices is chosen by decision maker n

is given by
Po=pr [Un> U, for an jii] eeeeeses (2)

From the assumption that the random com-
ponent of the utility function is independently
and identically distributed by means of the
negative reciprocal exponential distribution,
we can derive the multionomial logit model as
follows :

o _espQVi)
" exp(AVi) @)
7

where P, is probability that a decision maker
n will choose alternative i from the set of fea-
sible alternatives and 2 is a positive scale

parameter.

2. The formulation of the nested logit
model

In this study, nested logit model are used to
formulate the models relating the decision-
making for each trip represented by the tree
of Figure 4. The following are going to show
simply the basic concept of the nested logit
model®.

Now, considering a decision-making tree
with two levels, the choices of which are de-
noted by i, j respectively, then the utility U(i,

J) can be written as
UL J)= Ui Uy woevevvevererernnesinnanen (4)

where U; ! the utility of the choice i at the
upper level

Uy: © the utility of the choice j at the

lower level conditional on having the choice :
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at the upper level

Here we think U, Uy are independently dis-
tributed with the expected values V;, Uy and
variances 87, Of so equation{4) can pre

sented .
U(i’ j)= Vi+ ij,~+ Eit g reeeeeneeeanenn (5)

where ¢, e are the random portions of the
utilities U, Uy scparately and are assumed to
be independently Gumbel distributed.
According to the assumption of the utility
maximization, the joint probability of choosing
both choice i and choice j should be the pro-
bability when maximizing the utility U4, j). In
the case of nested logit model, the joint pro-

bability could be expressed as follows :

Pli, jJ)=P(i) PJli) vrerereereeremannens (6)

Firstly, with the condition of having chosen
the alternative i at the upper level, the con-
ditional probability Py of choosing j at the

lower level becomes :

Py = prl Vit eu= Vit e s for all j=xi]

_ exp(A V)

—_%*’ exp__{_( A Vi) eeeeesersennnionnnn (7)
where 1, is the seale parameter of ¢z (2,2=n?/
68,).

Then, the marginal probability P; of choos-
ing I at the upper level can be presented as
equation(7) with an additional term Up,
which i1s the maximum utility of the lower
level conditional on the result of choosing at
the upper level, added to the utility of only the

upper level.

P, = prob [Vi+6+Usx = Vi +¢ +U; %,
for all J35i] «reeeeeerreeseesseemrennns (8)

where Ux = max( Vy+ep)
= ‘/i*+5|* ........................ (g)
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Since ¢;; is by assumption Gumbel distributed
with parameter A, U; * is also Gumbel dis-
tributed with the expected value 1/, In 2]7
exp(4 V) and variance 8,2

Now, by instituting equation(8), the factors

of equation(7) are written as follows :

Vitei+ U= VA Vix +etex
=Vt Vit 1y ceveveennnns (10)

where Vix = 1/ In 2 exp(2 Vi)

Next, supposed z; is the Gumbel distribution
with the expected value value o and variance
8+, the following equation can be ob-

tained

o exp[ A (Vi+ Vix)]
T %’exp[lz( Vit Vix)]

where 1, is the scale parameter of r.[X,2=r%/6
(824?645 71].

Furthermore, as the necessary condition
that the estimated nested logit model is con-
sistent with the utility maximizing theory, 0,<
X/M =1 should be satisfied. In other words,
the variance of the random utility is the
smallest at the lowest level of the tree, and it
cannot decrease as we move from a low to a
higher level.

As showed above, the nested logit model is
represented by the choice probabilities at the
sepa-rated two levels. Also, the nested logit
model can simiraly be extended for the cases
of the tree levels. In this study, the nested lo-
git model described above are used to the mu-
Iti-level choice problem so that we can, avoid a
simultaneous model’s complexity caused by a
large number of alternatives that a traveler
faces in making his travel decision.

According to the concept of the model em-
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ployed in this study, the utility of the lower
level is included into the upper level model as
an explanatory variable in the form of the
expected maxjmum utility. In addition,
although the effects of the decisions of the
upper levels are not clearly expressed in the
above formulation, they are contained in the

utility of the current level.

3. The estimation method of the para-

meters

As the choices of the destination, 16 zone in
Nagoya Metropolitan Area are used, and at
mode choice level, car and transit are con-
sidered as two choices.

Since these models consider 4 or 5 levels for
a decision-making of one trip, it is difficult to
estimate all parameters simultaneously.
Therefore we use the easier method, sequen-
tial estimation. In the decision tree illustrated
Figure 4, the sequential estimation procedure
for home-based trip(the 1st trip) consists of
the following steps : '

Step 1: Firstly, the parameters Buu+1y 1 dam.m
at the lowest level, which are the destination
choice of the trip followed by the trip return-
ing home, are estimated in terms of the maxi-
mum likehood estimation method. It should
noted that it is necessary to estimate for car
and transit se-parately.

Step 2 : The estimated parameters at step 1
are computed to be the expected maximum
utility variable and used as the utility of con-
tinuing trip. Then the parameters Bua+1)1dm.m £
n(+1)1dmy.m for binary logit model of yeturning
home or continuing trip are to be estimated.
Of course same as the step 1, the estimation
should be made for transit and car separately.

Step 3 : The parameters fa\un.q0) for the bi-
nary logit model of the choice between car
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and transit are estimated. Then, the utility of

the lower level is included into the mode
choice level model as an explanatory varlable
in the form of the expected maximum utility.

Step 4 : At this step, the parameters Sy n
for the destination choice model of home-based
trip are estimated. By using the estimated re-
sult at the step 3, the utilities of mode choice
for the different destinations are represented
as the expected maximum utility expression in
this model.

Step 5 . At this step, the parameters Sy,
Bucy 1w for the binary logit model of the choice
going out or not are estlmated. Then the
estimated parameters at step 4 are used to be
as the expected maximum utility for the
choice of go out.

Non-home-based trips can be treated with
the same process of the 1st trip(home-based

trip) described above, only step 3 is omitted.
VI. EMPIRICAL TESTS OF THE MODEL

Disaggregate behavioural model proposed in
this study was examined for Nagoya me-
tropolitan area. In the following, the estimated
results are presented for each level of the de-

cision tree(see Figure 4).
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1. Destination choice level of non-home-

based trip

Now we are going (o estimate the para-
meters of destination choice model of non-
home-based trip. The alternatives are 16 zones
in Nagoya metropolltan area.

Three variables are used in the destination
choice model, which are the natural logarithm
of the daytime population at non-home poten-
tial destination, travel time and the expected
maximum utility of the following trips(men-
tioned at chap 4). Table 3 presents the
estimation result of the destination choice
model for both car and transit. All of the par-
ameters have the expected signs and are stat-
istically significant at 0.01 level. Particularly,
the statistical significance of the expected
maximum utility variable means the validity
of the assumption of this study that a traveler
makes his decision with considering that he
will return home after 2 trips. And since the
coefficient of the expected maximum utility
variable has the value between 0 and 1, this
model satisfies the utility maximizing theory.

Although the value of 9% and hitratio for
this model are not so high, they seem to be
results use two

good considering we

explanatory variables for the choice of 16

Table 3. Parameter estimates for destination choice model of non-home-based trip
Variable Transit Car
Coefficient t-value Coefficient t-value
In(daytime population) 1.479 6.43 1.140 5.89
travel time —0.1096 —9.24 —0.1426 —16.04
expected maximum utility* 0.960 3.53 0.719 13.37
Voa 0.336 0.478
hit-ratio 374 55.6
no. of observations 187 432

expected maximum utility of the following trips.

alternatives here. At this step, in order to ob-

tain the model having the better results, there

iIs a need to develop

explanatory variables for destination choice

improved sets of
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model.

2. Frequency choice level of non-home-
based trip

There are two alternatives which are re-
turning home or continuing travel for both car
and transit. Table 4 presents the estimated re-
sults.

When the alternative is continuing travel,
we use the expected maximum utility for the
lower level as an explanatory variable. Its t
value is statistically singificant at 0.10 level
and its coefficient has the value between 0
and 1. Therefore it can be said that this model
satisfies the utility maximizing theory.

On the other hand, when the alternative is
returning home, car ownership, travel time,
trips number are used as the explanatory vari-
ables. According to the estimated results, it
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can be found out that non-worker tends to
continue travel as the travel time from a non-
home-based destination to his home gets
longer. Here the trips number which have
been made by the traveler prior to the current
trip in a day is used to find out the effects on
the current trip from the trips made before.
The t value of that coefficient is statistically
significant at 0.10 level. Then it can be also
known that non-worker using transit tends to
continue travel, but in the case of using car,
he tends to return home as the trips number
become more.

The t values of the expected maximum uti-
lity and the trips number variables are not so
high, but their use can make it clear that
when a traveler does decision-making of a
trip, his decision of the current trip is affected
by decisions of the trips before and after.

Table 4. Parameter estimates for frequency choice model of non-home-based trip
. . Transit Car
Alternative Variable Coefficient | t-value |Coefficient| t-value
continue expected maximum 0.221 1.71 0.399 2.17
travel utility
constant 41.030 1.83 12.973 2.40
return if have no car 0.864 1.96 0.919 1.83
home travel time —0.0087 —1.08 —0.0396 -3.08
trips number —1.511 -2.07 0.309 1.67
o 0.542 0.135
hit-ratio 90.3 70.8
no. of observations 1922 1480

3. Mode choice level of home-based trip

The estimated resuits of the mode choice is
shown in Tabele 5. There are two alterna-
tives which are transit or car.

The expected maximum utility and travel
time are used as a common variable for two
alternatives. They are statistically significant

at 0.01 level and since the coefficient of the

expected maximum utility variaBle has the
value between 0 and 1, this model satisfies the
utility maximizing theory.

On the other hand, when the alternative is
car, we use sex and license as the explanatory
variables. They are statistically significant at
0.01 level.

All of the coefficients of the variables are
statistically significant at 0.01 level and A
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Table 5. Parameter estimates for mode choice model of home-based trip
Alternative Variable Cofficient t-value
transit, car expected maximum 0.667 9.70

utility
travel time —0.0915 —5.36
car constant 92.130 9.38
if male —-1.403 —14.91
if have license 4.080 19.43
o 0.529
hit-ratio 87.1
no. of observations 1671

hit-ratio have fully high values.

4. Destination choice level of home-based

trip

At this step, the alternatives and the
explanatory variables are same as that used
at destination choice level of non-home-based

trip. The coefficients are fully significant, par-

ticularly the expected maximum utility vari-
able for the lower level has considerably large
t value(Table 6). From this result, it can be
confirmed that there are the interrelationships
among trips. However, similar to 2, it is
necessary to adopt other available variables in
order to obtain the model having the better re-

sults.

Table 6. Parameter estimates for destination choice model of home-based trip
Variable Coefficient t-value
In(daytime population) 1.679 20.82
expected maximum utility 0.909 42.15
o 0.325
hit-ratio 42.3
no. of observations 1671

5. Trip generation choice level of home-
based trip

The estimated results for trip generation
choice model is shown in Table 7. There are
two alternatives which are going out or not
going out from home. When the alternative is
going out from home, the expected maximum
utility for the lower level is used as an
explanatory variable. It is statistically signifi-
cant at 0.01 level and its coefficient has the
value between 0 and 1, so this mode! satisfies

the utility maximizing theory.

On the other hand, for the case that the
alternative is not going out from home, we use
sex, occupation and car ownership as the
explanatory variables. here to examine the in-
fluence of the numbers of car ownership on
trip generation choice, car ownership variable
is divided into three cases, having no car,
having 1 car and having more 2 cars. Accord-
ing to the estimated results, the more cars the
person has, the easier he(she) tends to go out
from home. And all used variables have the
expected sings and except the car ownership

having 1 car the variables are statistically sig-
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Table 7. Parameter estimates for generation choice model of home-based trip
Alternative Variable Cofficient t-value
go out expected maximum utility 0.564 10.84
do not constant 67.170 10.85
go out if male —0.449 —3.22
if housewife -~0.907 —8.49
if have no car 1.630 9.97
if have 1 car 0.305 2.10

o 0.098

hit-ratio 63.6
no. of observations 2315

nificant at 0.01 level.

From the above results of 1 -5, we can con-
firm the assumption that when a traveler
makes a trip during a tour, the trip decision-
making of each level depends on not only the
decisions of the upper level but also the lower
level, as well as on the decisions of the current
level. And the coefficients of the expected
maximum utility have the value 0 and 1.
Therefore it can be said that these models sat-

isfy the utility maximizing theory.

VI. CONCLUSION

In this paper, a disaggregate model system
for the travel demand of non-worker’s trip in
a metropolitan area has been developed, and
empirical tests of the model has been done.

The model in this paper incorporates trip
generation choice, destination choice and mode
choice for home-based trip, and destination
choice and mode choice for non-home-based
trip of non-worker into a utility maximizing
framework, which uses the concept of travel
tours. And the model incorporates the concept
that the decisions of a trip in tours depend on
the decisions of trip conducted theretofore and
the decisions of trips planned thereafter, as

well as on the current trip conditions in order

to represent the interrelationships among trips
made during a day. Then we adopt the
assumption that a traveler makes successively
utility maximizing with considering the follow-
ing 2 trips that will be made after.

Empirical tests of the model for Nagoya me-
tropolitan area show encouraging results and
prove the validity of the assumption of this
model.

The issues in the future research are as fo-
llows :

1) we propose the assumption that when a
traveler does decision-making for a trip during
a tour, he will consider the following 2 trips
that will be made after. However, it must be
necessary to examine the validity of the
assumption by testing for the other numbers
of the following trips.

2) The model system in this study is deve-
loped for predicting travel demand in a me-
tropolitan area. Accordingly, it is necessary to
be test the validity of the model system in the
prediction by applying it to the travel demand

prediction.
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