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NOTES ON THE RUSCHEWEYH 
DERIVATIVES

Nak Eun Cho and Oh Sang Kwon

Abstract

We introduce 반】。classes S*(n, a) and Kin, a) of analytic functions

by using the symbol Dy(z) defined by 〃 - £ *yV) (a> -1). The 
. (丄尸*a

object of the present paper is to derive some properties of these 

시asses.

1. Introduction

Let A(n) be the class of the functions of the form

(1.1) X2)=z+ S an (n £ N= {1,2,3,…})
k=n+l

which are analytic in the unit disk U~{z ' I z I <!}.

A function f(z) belonging to the 이ass AM is said to be in the 

class 5*(n) if and only if

(1-2) Re径爲}>0 (z e U).

JW

Further, a function f(z) belonging to the class A(n) is said to be 

in the class K(n) if and only if
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(1.3) Re{l+^-}>0 (z e U).

f(z)

Note that f(z) e K(n) if and only if 矿仞 £ S*(n), and that K(n) CS*(n).

For 난le functions fj(z)(j=l,2) defined by

(L4) 施)=n+ S
fe=«+2 “

we define the Hadamard product (or convolution) of fi(z)

and f^z) by

(1.5) £ 处j z妃 虬
k=u+i

Making use of the convolution, Ruscheweyh [4] introduced the 

symbol DJ(z) by

(L6) 〃购=&/a *f(z) (a>-l)

for f(z) in A(n), which is called the Ruscheweyh derivative of f(z), 

A function f(z) belonging to the class A(n) is said to be in the 

class S*(n,a) if it satisfies D^f(z) e S*(n) for a三-1. A function f(z) 

belonging to the 시ass A(n) is said to be in the class K(n,a) 迂 

it satisfies D"f(z) e K(n) for a>-l.

The classes S*(lfa) and K(l,a) for n=l were studied by Owa, 

Fukui, Sakaguchi and Ogawa [3].

2. Some Properties of The Classes S*(nf a) and K(n, a)
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In order to derive some properties of our classes, we have to 

recall here the following results.

Lemma 1 ([1], [3〕). for a^-1, we have

(2.1) 丿‘ =(&+1)£仃痼・0£质勿・

Lemma 2([2]). Let ^(u,v) be a complex valued function,

© ： 3—C, D CCXC(C is the complex plane),

and let u—u^iu^ v—v\+iv2. Suppose that the function ^(ufv) satisfies 

the following conditions:

(1) ^(utv) is continuous in D ；

(2) (1,0) 8 D and Re{<^(lt0)}>0 ；

(3) for all (iua,跖)e D and such that Vx<-n(l + u/)/2f 

Re{<^(iu2tVi)}<0.

Let R2丿=I+Z微'….be regular in the unit disk U such 

that (p(z)t zpf(z)) s Z) for all 2 a 17. If

Re{^(p(z)t 겨尸⑵)}>0 (z £ U)3

then Re{P(z)}>0 (z z U).

Applying the above lemmas, we derive

Theorem 1. For a스), we have

S*(n,a+1) CS*(n,a),
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Proof. Define the function p(z) by

(22)
z(w(z)y

D^f(z)
=p(z)

for f(z) belonging to the class S*(n,a+1). Then p(z)=1 +p^' + p»+l^+1 + . 

.is regular in U, so using Lemma 1, we have

(23) ~D^r~^r(a+p(z))-

Taking the logarithmic differentiations of both sides in (2,3), we 

cfctain

(2.4)
2伽+物L 八，zpr(z)

(2.5)
가加+婀 \\ZD'(z) . 5

同 Da+¥(z) } ^(z)+a+p(z) } >o'

Let p(z)=u—ui-^iu2f 거)，(z)=v=강初2, and

(2.6) ^(u,v)=u T—-：
a~ru

Then

(1) <^u,v) is continuous in D=(C-{a\)'XC ；

(2) (1,0) e D and Re{^(l,0)}=l>0,

(3) for all (iu2,Vi) e D and such 아囱 Vi<-n(l+u/)/2f
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Re{^(iu2,vI)}=<^_

a^+wz
< an(l+u/)

-2(a?+u22)

<0.

Therefore, the function ^(u,v) satisfies the conditions in Lemma 2. 

This implies that

(2-7) Re{^^^}=Re\p(z)}>0 (z e U),

W(z)

this is, that f(z) e S*(nfo). Thus we complete the assertion of Theorem 

1.

Remark. From the definition of the Ruscheweyh derivative, it is 

easy to see that

鄭(z))，=石글甚 *zf，(z)=DR(zf(z)).
(丄丄十a

With the help of Theorem 1 and Remark, we prove

Theorem 2. For a>0, we have

K(n}a-^1) CK(n,a).

Proof. Note that

f(z) 8 K(n,a^l)台 D^+1f(z) e K(n)

z(I^+if(z)y e S 物
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QZ严使尸(动s S^(n) 

zf(z) e S*(n,a+1) 

바乏 zf(z) £ S*(nfa) 

ir(zf(z)) £ SY仞

3 z(D%z))，€ S^(n) 

u추 !鄭⑵ £ K(n) 

스〉f(z) g K(n,a).

This completes the proof of Theorem 2.

Finally, we drive

Theorem 3. If the function f(z) defined by (1.1) is in the class 

S*(n,a)f then

(2-8) 袖으业-브｝〉诙•그-(z e U),

where !<^<(n~2)/2.

Proof. Defining the function p(z) by

(2.9) 挡의- )PJ = y+(l--Y)P(z)

z

算
for f(z) £ S*仞,q), where -■ , we see that p(z)=l+p,^1+p„+i

2(p-l)i fi
・・.is regular in 17. Making the logarithmic differentiations of

both sides in (2.9), we have

(91 m z(D^f(z))'^ (7-彻'仞
SU丿 —一,(阳丿｛r+(l-y)p(z)Y

IW
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Therefore

(2.11) 朝+若饗給商＞0伝£ U).

Letting 力(Z)=“=佑+以2, zpr(z)—v=vi+iv2t and 

(l-l)v
(2.12) 顺=%M+g}'

we obtain that

(1)

(2)

(3)

^(u,v) is continuous in D~(C-[~])XC»

(lf0) £ D and Re{^(l,0)}—l>0 ； * *

for all (i&vi) £ D and such that 虻预(1+厲)/2,

Re{帕y}=J +而.I 件籍'、--r (Ed {寸+(7.丫)气/}

V ，邛U・Y)(너*〃

~ 2(^-1) ( y24-(7-y)2u22}

<0

for l<^<(n+2)/2. Therefore, with the aid of Lemina 2, we conclude 

that Re\p(z)}>0 (z z U)t that is, that

(2,13)
_ n

>7~2(^-l)+n (z e U).

Corollary. If the function f(z) defined by (LI) is in the class 

K(n,a)} then
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(2.14) ReW(z)y} (z e U)t
2(p-l)~rn

where l<^<(n+2)/2

Proof. Noting that

f(z) £ K(n,a) 타그 D/(z) e K(n)

J z(DY(汾 e S 物 

0 D财⑵)£ S*(n) 

늠가 rf(z) e S*(n,a),

we comple托s the pm여f of Corollary.
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