ON GENERALIZED NEAR-FIELDS

S. K. Lee and C. V. L. N. Murty

Throughout this paper N stands for a right near-ring. For the basic terminologies and notations, we refer to Pilz [7]. In Murty [6] a near-ring N is called a gerneralized near-field (GNF) if for each a in N there exists a unique b in N such that a=aba and b=bab, that is, (N, \cdot) is an inverse semigroup. See Howie [1], for properties of inverse semigroups. Recall that a near-ring N is called subcommutative if aN=Na for all a in N and a nearring N is called regular (strongly regular) if for each a in N there exists b in N such that a=aba $(a=ba^2)$. In Lee [3], Jat and Choudhary [2], a nearring N is called left bipotent if $Na=Na^2$ for all a in N. In Ligh and Utumi [4], N is said to have the condition C₁ (C₂) if Na=aNa(aN=aNa) for all a in N. has IFP if ab=0 implies bxa=0 for all x in N and a, b in N [7].

The aim of this paper is to show a characterization of a GNF, that is, N is an (left bipotent) S-near-ring with the condition C_1 if and only if it is a generalized near-field.

We need the following lemmas due to Mason [5] and Murty [6].

Lemma 1. If a zero-symmetric near-ring N has no non-zero nilpotent elements, then N has IFP.

Lemma 2. If a near-ring N is a GNF, then it is zero-symmetric and has no non-zero nilpotent elements.

Theorems 3. Suppose N is a strongly regular near-ring. Then N has the condition C_2 .

Proof. Let a be in N. Then a=axa for some $x \in N$ by Theorem 3 of Reddy and Murty [8]. Hence for a and $b \in N$, $ab=axab=axa-bxa \in aNa$ by Corollary 11 of Reddy and Murty [8]. Therefore aN=aNa.

Lemma 4. If a near-ring N has the IFP, then for any $a, n \in N$ and any idempotent $e \in N$, ane = aene.

The proof of this lemma is easy and hence omitted.

Corollary 5. If a regular near-ring N has the IFP, then it has the condition C_2 .

Proof. Let a be in N. Since N is regular, there exists $x \in N$ such that a = axa. Since xa is an indempotent, $xa = xaxa = x(xa)a(xa) = x^2a^2$ by Lemma 4. So $a = axa - ax^2a^2 \in Na^2$. Thus N is strongly regular and hence, by Theorem 3, N has the condition C₂.

Theorem 6. Let a zero symmetric near-ring N have no non-zero nilpotent elements. Then N is regular if and only if it has the condition C_2 .

Proof. If N is regular, by Lemma 1 and Corollary 5, N has the condition C_2 .

For the converse, assume that N has the condition C₂. Then, for any $a \in N$, there exists $x \in N$ such that $a^2 = axa$. Thus we have (a - ax)a=0, By Lemma 1, a(a-ax)=0 and ax(a-ax)=0. Hence we have $(a-ax)^2$

64

=0. Since N has no non-zero nilpotent elements, a=ax. Since N has the condition C_2 , we have a=ax=aya for some $y \in N$. Hence N is regular.

Theorem 7. (Murty [6]). The following are equivalent; (1) N is a GNF.

- (2) N is regular and each idempotent is central.
- (3) N is regular and subcommutative.

Theorem 8 (Lee [3]). N is a left bipotent S-near-ring if and only if it is strongly regular.

Now we prove our main theorem.

Theorem 9. The following are equivalent.

- (1) N is a GNF.
- (2) N is regular and subcommutative.
- (3) N is an S-near-ring with the condition C_1 .

(4) N is a left bipotent S-near-ring with the condition C_1 .

Proof. $(1) \rightarrow (2)$ Follows by theorem 7.

 $(2) \rightarrow (3)$. Let $xa \in Na$ and a = aya for some $y \in N$. Since N is subcommutative, xa = az for some $z \in N$. Therefore by Theorem 7, $xa = az = ayaz = azya \in aNa$. Hence N has the condition C_1 . So That N is an S-near-ring.

(3) \rightarrow (4). Let *a* be in *N* with $a^2=0$. Since *N* is an S-near-ring with C₁, there exists $x \in N$ such that a=axa. since $xa \in Na=aNa$, xa=aya for some $y \in N$. So $a=axa=a(aya)-a^2ya=0$. Thus *N* has no non-zero nilpotent element. Hence by Proposition 9.43 of Pilz

[7], for each idempotent $e \in N$ and $n \in N$, en = ene. Therefore N is strongly regular by Theorem 12 of Reddy and Murty [8]. Thus by Theorem 8, N is a left bipotent S-near-ring.

(4) \rightarrow (1) From Theorem 8, N is strongly regular. From the hypothesis and Theorem 3, N is subcommutative. N is regular by Theorem 3 of Reddy and Murty [8]. Hence N is GNF by Theorem 7.

Remarks. The condition that N is a S-near-ring is essential in Theorem 9. As an example consider the following :

Example 10 (See Pilz [7], p. 340 (E), (0,7,0,7). Let (N, +) (where $N = \{0,a,b,c\}$) be the klein four group. Define multiplication as follows;

-	0	а	b	с
0	0	0	0	0
a	0	а	0	а
b	0	0	0	0
с	0	а	0	а

Then $(N, +, \cdot)$ is a near-ring which satisfies the conditions C_1 and C_2 . But N is not an S-near-ring and hence N is not a GNF.

References

- J. M. Howie, An introduction to semigroup theory (Academic Press, New York (1976)).
- 2. J L. Jat and S. C. Choudhary, On left bipotent near-rings, Proc. of the Edinburgh

66

Math. Soc., 22(1979), 99-107.

- S K. Lee, On the left bipotent S-near-rings, Mathematics Seminar Notes (Kobe University), Vol. 11(1983), 221-223.
- S. Ligh and Yuzo Utumi, Some generalizations of strongly regular near-rings, Math. Japonica 21, 113-116
- G Mason, Strongly regular near-rings, Proc. of the Edinburgh Math. Soc., 23 (1980), 27-35
- C. V. L N. Murty, Generalized near-fields, Proc of the Edinburgh Math. Soc., 27(1984), 21-24.
- 7. G. Pilz, Near-rings (North-Holland, Amsterdam, 1977).
- 8. Y. V. Reddy and C. V. L. N. Murty, On strongly regular near-rings, Proc. of the Edinburgh Math. Soc., 27 (1984), 61-64.

Department of Mathematics Gyeongsang National University Chinju 660-701, Korea

Department of Mathematics A. P. Residential Degree Collge V. P. South, Nagrajunasagar-522 439, A. P. India