Wan Se Kim and Byung Soo Lee

I. Introduction

It is know that the system of the form

 $(E) \qquad \qquad \dot{x} = f(t, x)$

where $f: RxR^n \rightarrow R^n$ is continuous and T-periodic with respect to t for some positive constant T, has at least one T-periodic solution if we assume

(H₁) The solution to IVP for (E) are unique

(or $\langle f(t, x_1) - f(t, x_2), x_1 - x_2 \rangle \langle 0, t \in [0, T], x_1, x_2 \in \mathbb{R}$ with $||\mathbf{x}|| = r$ for some r > 0),

 $(H_2) \langle f(t, x), x \rangle \langle 0$ for all $(t, x) \in RxR^n$ with ||x|| = r for some $r \rangle 0$. It is natural to ask whether we can find an appropriate sign condition which is independenpent of (H_1) , (H_2) and still guarantees the existence of *T*-periodic solution to the system (E). The answer is affirmative when we replace (H_2) by a generalized sign condition far away from the origin without assuming (H_1) .

In section 1, we give the answer to our question in BVP view. More precisely, we investigate the existence of T-periodic solutions to the BVP

$$\dot{x} = f(t, x)$$
$$x(0) = x(T)$$

where x = x(t), $f: RxR^n \to R^n$ is T-periodic with respect to t and continuous(or f is a Caratheodory function having sublinear growth in x). The proof is based on Leray-Schauder's continuation theorem.

In section 2, we extend our result to the delay functional differential equations. More precisely, we devote ourselves to prove the existence of T-periodic solutions to the BVP

$$\dot{x} = f(t, x_i)$$
$$x_0 = x_T$$

, where x=x(t), $x_i: [-r, 0] \rightarrow R^n$, $x_i(s)=x(t+s)$ and $f: RxC_r \rightarrow R^n$ is a continuous function and takes bounded sets into bounded sets. Here r is a non-negative constant and C_r is the Banach space of continuous mappings $h: [-r, 0] \rightarrow R^n$ with the norm

$$||h|| = \sup_{s \in [-r,0]} |h(s)|$$

The proof is based on Mawhin's continuation theorem.

Our results are related to these results in [2], [3] which are derived from the method of guiding functions.

II. First Order Ordinary Differential Equations.

Let C_r be the Banach space of mappings $x : R \rightarrow R^*$ which are continuous and T-periodic with the norm

$$||x||_{C_{\tau}} = \sup_{t \in \mathbb{R}} ||x(t)||$$

||x(t)|| is the Euclidean norm of x(t). Let ϕ_i and μ_i , $i=1, 2, \dots, s$ be linear independent solutions to the *T*-periodic, homogeneous differential equations $\dot{x} = A(t)x$ and its adjoint $\dot{y} = -A^*(t)y$ with $A : R \rightarrow R^n$ continuous and *T*-periodic, respectively. By Gram Schmidt procedure, we may assume

$$\langle \phi_i, \phi_j \rangle = \langle \mu, \mu_j \rangle = \delta_{ij} \quad 1 \leq i, j \leq s.$$

Define

$$P: C_{T} \to C_{T} \quad by \quad Px = \sum_{\substack{1 \leq i \leq s \\ i \leq r}} \langle x, \phi_{i} \rangle \phi_{i}$$
$$Q: C_{T} \to C_{T} \quad by \quad Px = \sum_{\substack{1 \leq i \leq s \\ i \leq r \leq s}} \langle x, \mu_{i} \rangle \mu$$

Then they are projections.

Proposition. Suppose A(t) and b(t) are continuous and T-periodic on R. The eugation

(II.1)
$$\dot{x} = A(t)x + B(t)$$

has a T-periodic solution if and only if

If (II.2) is satisfied, then (II.1) has unique T-periodic solution such that Px=0.

Now let
$$C_{TT-p} = \{x \in C_T \mid Px = 0\}$$

 $C_{TT-p} = \{x \in C_T \mid Qx = 0\}$.

Define $K : C_{TI-q} \to C_{TI-q}, b \to x$, where x is a solution to (II.1). Then K is well-defined, linear and K(0)=0. And since $I-Q : C_T \to C_{TI-q}$ is linear, $K(I-Q) : C_T \to C_{TI-P}$ is well-defined, linear and bounded. Moreover, $K(I-Q) : C_T \to C_T$ is a compact operator.

You may find the above mentioned results in [3].

Lemma II.1 Let $F : [0,T] \times \mathbb{R}^n \to R$, $(t,x) \to F(t,x)$ be continuous function, then $H : C_T \to C_T$, $x \to Hx = F(\cdot, x(\cdot))$ is a continuous and maps bounded sets into bounded sets.

Lemma II.2 If A is a positive definite operator, then there is c > 0 such that $\langle Ax, x \rangle > c ||x||^2$ for all $x \in \mathbb{R}^n$,

Theorem II.1 Let $f: R x \mathbb{R}^n \to \mathbb{R}^n$ be continuous and *T*-periodic function with respect to *t*. Let $A: \mathbb{R}^n \to \mathbb{R}_n$ be symmetric and positive definite linear operator and $\langle f(t,x), Ax \rangle \geq 0$ for $||x|| \geq r$ for some $r \geq 0$. Then BVP

(E)
$$\dot{x} = f(t, x)$$

(B)
$$x(0) = x(T)$$

has at least one solution.

Proof Let $D(L) = C_T \cap C^1[0,T]$. Define an operator $L: D(L) \subset C_T \to C_T$ by $Lx = \dot{x} - x$ for $x \in D(L)$, then $\dot{x} - x = 0$ has only trivial *T*-periodic solution which implies P = Q = 0. Hence for each $f \in C_T$ the *T*-periodic solution to $\dot{x} = x + f$ exists uniquely.

Therefore $L^{-1}: C_T \to C_T$, $f \to x$ exists and is a compact operator. Now consider a substitution operator

$$N: C_T \to C_T, \quad x \to -x(\cdot) + f(\cdot, x(\cdot)).$$

Then N is continuous and maps bounded sets into bounded sets. Therefore, $x \in C_T$ is a solution to the BVP (B) (E) if and only if

 $x \in D(L)$ and x satisfies

(II.3)
$$Lx = Nx$$
, or equivalently

 $(IL4) x = L^{-i}Nx$

Since L^{-i} is a completely continuous and N is continuous and maps bounded sets into bounded sets, the composition $L^{-i}N : C_T \to C_T$ is continuous and compact

By using Leray-Schauder's degree arguement, if all possible solution x to the family of equations

(II.5)
$$x=L^{-1}Nx, 0 \leq \lambda \leq 1,$$

are buonded in C_r independently of λ , then (II.4) has a solution. If (x, λ) solves (II.5), then (x, λ) solves

(II.6)
$$Lx = \lambda Nx, 0 \leq \lambda \leq 1,$$

and x is a solution to the T-periodic BVP of the equation

(II.7)
$$\dot{x} = (1 - \lambda)x + \lambda f(t, x), \quad 0 \leq \lambda \leq 1$$

When $\lambda = 0$ by our assumption, we have only trivial *T*-periodic solution. Thus the proof will be completed if we show that the solution to (II.6), for $0 \le \lambda \le 1$, are bounded in C_r independently of λ . To this end, define $\phi: \mathbb{R}^n \to \mathbb{R}$ by $\phi(x) = \langle Ax, x \rangle$. Let $M = \sup_{\|x\| \to +\infty} \phi(x)$, then since $\lim_{\|x\| \to +\infty} \phi(x) = \infty$, for $M_0 > M$, there $r_0 > r$ such that $\phi(x) > M_0 > 0$ whenever

We prove that for any possible T-periodic solution x to (II.7), we have

 $^{\|}x\| > r_0$.

(II.8) $|| x(t) || \leq r_0 \text{ for all } t \in [0,T]$

To do this, define $v: R \to R$, $t \to \phi(x(t))$, then v is of class C' and T-periodic and such that

(II.9)
$$\dot{v}(t) = 2\langle Ax(t), \dot{x}(t) \rangle$$

= $2(1-\lambda)\langle Ax(t), x(t) \rangle + 2\lambda\langle Ax(t), f(t, x(t)) \rangle$,

for all $t \in \mathbb{R}$. For every value t_0 of t such that

 $v(t_0) = \sup_{t \in \mathbb{R}} v(t) = \sup_{t \in [0,T]} v(t),$

we have $v(t_0) = 0$, since v can be estended on the whole of R. If $||_x(t_0) || > r$, then $\langle f(t_0) \rangle$, $Ax(t_0) > 0$. Thus

$$v(t_0) = 2(1-\lambda) \langle Ax(t_0), x(t_0) \rangle + 2\lambda \langle Ax(t_0), f(t_0, x(t_0)) \rangle \rangle 0$$

which is impossible. Hence $||x(t_0)|| \langle r$.

If there exists $t_i \in [0,T]$ such that $||x(t_i)|| > r_0$, then $v(t_i) = \langle Ax(t_i), x(t_i) \rangle$ > M_0 and so $M_0 < v(t_i) \leq v(t_0) = \langle Ax(t_0), x(t_0) \rangle \leq \sup_{\|x\| \leq r} \langle Ax(t), x(t) \rangle = M$ which is a contradiction. Hence we have $||x(t)|| \leq r_0$ for all $t \in [0,T]$ for every possible T-periodic solution to (II.7).

So we have that every solution (x, λ) to (II.5) has an a' priori hound in C_r independently of λ . Therefore, by Leray-schauder's continuation theorem, $\dot{x} = L^{-1}Nx$ has a solution, or $\dot{x} = f(t, x)$ has a solution in C_r .

Corollary II.1 Let $f: RxR^n \to R^n$ be continuous and *T*-periodic function with respect to *t*. Let $\langle f(t, x), x \rangle \rangle 0$ for $||x|| \ge r$ for some $r \ge 0$. Then BVP (E) (B) has at least one solution.

Theorem II.2. Let $f: RxR^n \to R^n$ be continuous and *T*-periodic function with respect to t with $||f(t, x)|| \leq \alpha ||x|| + \beta$ for some α ,

 $0\langle \alpha \langle 1/T, \beta \rangle 0$ for all $(t, x) \in RxR^n$. Let $A : R^n \to R^n$ be symmetric linear operator and has no eigenvalue with zero real part, and $\langle f(t, x), Ax \rangle \rangle 0$ for ||x|| > r for some r > 0. Then BVP (B) (E) has at least one solution in C_T .

Proof Let $D(L) = C_T \cap C^{!}[0, T]$. Define an operator $L : D(L) \subseteq C_T \to C_T$ by $Lx = \dot{x} - \varepsilon Ax$, where ε such that $\varepsilon T \parallel A \parallel + \alpha T \langle I, \text{ for } x \in D(L),$ then for each $f \in C_T$, the *T*-periodic solution *x* to $\dot{x} = \varepsilon Ax + f$ exists uniquely. Therefore $L^{-1} : C_T \to C_T, f \to x$ exists and is a compact operator. Now we consider a substitution operator

$$N: C_T \to C_T, \ x \to - \varepsilon A x(\cdot) + f(\cdot, \ x(\cdot))$$

Then N is continuous and maps bounded sets into bounded sets. Therefore, $x \in C_T$ is a solution to the BVP (B) (E) if and only if $x \in D(L)$ and x satisfies

$$(II.10) Lx = Nx, or$$

$$(II.11) x = L^{-i} N x.$$

Since L^{-r} is a completely continuous and N is continuous and maps bounded sets into bounded sets, the composition $L^{-r}N: C_T \to C_T$ is continuous and compact. By using Leray-Shcauder's degree arguement, if all solution x to the family of equations.

(II.12)
$$x = \lambda L^{-1} N x, \quad 0 \leq \lambda \leq I,$$

are bounded in C_1 independently of λ , then (II.10) has a solution. If (x, λ) solves (II.12), then (x, λ) solves

(II.13)
$$Lx = \lambda Nx, 0 \leq \lambda \leq 1,$$

and x is solution to the T-periodic BVP of the equation.

(II.14)
$$\dot{x} = (1-\lambda)\varepsilon Ax + \lambda f(t, x), \quad 0 \leq \lambda \leq 1.$$

If $\lambda = 0$ we have only trivial *T*-periodic solution. Thus, the proof will be completed if we show that the solution to (II.12), for $0 \langle \lambda \leq 1$, are bounded in C_7 independently of λ . To this end, let (x, λ) be any solution to (II.13) with $0 \langle \lambda \leq 1$ then

$$\|\dot{x}\| = (1-\lambda) \|\varepsilon Ax\| + \lambda \|f(t, x)\| \quad (0 \le \lambda \le 1)$$

$$\leq \|\varepsilon Ax\| + \|f(t, x)\|$$

$$\leq \varepsilon \|A\| \|x\| + \alpha \|x\| + \beta$$

$$= (\varepsilon \|A\| + \alpha) \|x\| + \beta.$$

If $||x(t)|| \ge r$ for all $t \in [0, T]$, then

$$0 = \int_0^T \langle x(t), Ax(t) \rangle dt$$

= $(1 - \lambda) \varepsilon \int_0^T \langle Ax(t), Ax(t) \rangle dt + \lambda \int_0^T \langle f(t, x(t)), Ax(t) \rangle dt \rangle 0$

which is impossible. Hence there is a $t_o \in [0, T]$ such that $||x(t_o)|| \langle r$. Since $x(t)=x(t_o) + \int_{t_o}^t x(t)dt$, $||x|| \leq r + \int_o^T ||\dot{x}|| dt = r + T ||\dot{x}||$. Therefore, $||x|| \leq r + [\varepsilon T ||A|| + \alpha T] ||x|| + \beta T$, or $[1-\varepsilon T ||A|| - \alpha T] ||x|| \leq r + \beta T$.

Since $\varepsilon T || x || + \alpha T \langle 1$, we have

$$||x|| \langle (r+\alpha T) / (1-\varepsilon T ||A|| - \alpha T).$$

Hence, we have that every solution (x, λ) to (II.12) has an a' priori bound in C_T independently of λ . Therefore, by the Leray-Schauder's continuation Theorem, $x=L^{-1}Nx$ has a solution, or $\dot{x}=f(t, x)$ has a solution in C_T .

Corollary II.12 Let $f: RxR^n \to R^n$ be continuous function and

T-periodic function with respect to t with $||f(t, x)|| \leq \alpha ||x|| + \beta$ for some α , $0 \leq \alpha \leq 1$, $\beta \geq 0$ for all $(t, x) \in RxR^n$. And $\langle f(t, x), x \rangle 0$ for $||x|| \geq r$, for some $r \geq 0$.

Then BVP (B) (E) has at least one solution in C_T .

Example
$$\dot{x} = ax + bx^3 + e(t)$$

 $x(0) = x(T),$

where $e: R \to R$ is continuous, T-periodic and b > 0, has at least one T-periodic solution.

III. First Order Ordinary Delay Functional Differential Equations

Let us denote by C_T the Banach space of continus and *T*-periodic mappings $x : R \to R^n$ with the norm $||x||_{C_T} = \sup_{t \in R} ||x(t)||$ where $|| \cdot ||$ is the Euclidean norm in R^n . For some r > 0 let C_r be the Banach space of continuous mapping $\phi : [-r, 0] \to R^n$ with the norm $||\phi||_{C_r} = \sup_{\theta \in [-r,0]} ||\phi(\theta)||$. When r=0, C_r is naturally identified to R^n If $x \in C_T$ and $t \in T$, we shall denote by x_t the element of C_r defined by

$$x_i: [-r, 0] \rightarrow R^n, \quad \theta \rightarrow x(t+\theta).$$

We note that,

$$\|x_{i}\| C_{r \ \theta \in [-r,0]}^{-} \|x(t+\theta)\| \leq \sup_{t \in \mathbb{R}} \|x(t)\| = \|x\| C_{r}.$$

When r=0 the mapping x, will be naturally identified with the element x(t) of R^n . Moreover we shall sometimes identify, without further comment, a constant mapping in C_T or C_r with the element of R^n

given by its constant value.

Let $f: RxC_r \to R^*$, $(t, \phi) \to f(t, \phi)$

be T-periodic with respect to t, continuous and take bounded sets into bounded sets. Let us consider the functional differential equation.

(III.1)
$$x = f(t, x_i).$$

If we define the Banach space by $X = \{x \in C_r : x_0 = x_T\}$ and

 $DomL = X \cap C^{t}[0, T] \cap C_{T}$ $L : DomL \to C_{T}, x \to x,$ $N : C_{T} \to C_{1}, x \to f(\cdot, x),$

then $KerL = R^n$ $ImL = \{y \in C_T : \int_0^T y(s) ds = 0\}$.

Let us introduce the continuous projectors

 $P: C_T \to C_T, \quad x \to x(0)$ $Q: C_T \to C_T, \quad x \to 1 / T \quad \int_0^T x(s) ds.$

Then for each $x \in C_T$

 $\|Qx\|_{C_{\tau}} < \|x\|_{C_{\tau}}$

and ImQ is the subspace of C_r of constant mappings, and the following sequence is exact;

$$C_{\tau} \xrightarrow{P} Dom L \subset C_{\tau} \xrightarrow{L} C_{\tau} \xrightarrow{Q} C_{\tau}$$

which implies

$$KerL = ImP$$
, $ImL = KerQ$

and

$$C_{\tau} = ImP \oplus KerP = KerL \oplus KerP, \quad C_{\tau} = ImQ \oplus KerQ = ImQ \oplus ImL$$

as topological sums.

Thus we have $C_T / ImL \simeq ImQ$, $ImP = \{x(0) : x \in P\} = R^n$, $ImQ = \{1 / T \ \{_0^T x(s) ds \ ; x \in C_T\} = R^m$.

dim KerL=n=dim ImQ=dim $C_T / ImL=dim CoKerL \langle \infty, L$ is linear and ImL is closed in C_T . Hence L is Fredholm mapping of index zero and there exists an isomorphism

$$J: ImQ \rightarrow KerL$$

If we consider the restriction

$$L_P = L \mid Dom \cap KerP : Dom L \cap KerP \to ImL,$$

then L_r is bijective, so that its algebraic inverse

 $K_P = L_P^{-1}$: $ImL \rightarrow DomL \cap KerP$

is defined and $K_r(y)(t) = x(t) = \int_0^T y(s) ds$

We will denote $K_{PQ} : C_f \to DomL \cap KerP$ the generalized inverse of L defined by $K_{PQ} = K_P(I-Q)$.

Then K_{PQ} is a compact operator by Arzela-Ascoli theorem. $K_{PQ}N$ takes bounded sets into relatively compact sets since N takes bounded sets into bounded sets. You may find the following Lemma in Mawhin [1], Mawhin and Gains [2].

Lemma III.1 With the assumption and notations above, N is L-compact on each bounded subset of C_{τ} .

Theorem III.1 Let $f: RxC_r \to R^n$ be *T*-periodic with respect to *t*, continuous and takes bounded sets into bounded sets. Let $A: R^n \to R^n$ be a symmetric and positive definite linear operator such that $\langle f(t, x_0), Ax \rangle > 0$, $||x|| \ge r$ for some r > 0. Then BVP

(B)
$$x_0 = x_T$$

has at least on solution

Proof. We will apply Mawhin's continuation theorem to our proof. Now it is easy to see $x \in C_T$ is a solution BVP (E) (B) if and only if $x \in DomL$ and

$$(III.1) Lx = Nx.$$

Since L is a Fredholm mapping of index zero and N is L-compact, by Mawhin's continuation theorem if there exits a bounded open set G in C_T such that

(a) for each $\lambda \in]0, 1[$, every solution x of $Lx = \lambda Nx$

is such that $x \in \partial G$.

(b) $QNx \neq 0$ for each $x \in KerL \cap \partial G$ and $d(JQN \mid_{KerL}, G \cap KerL, 0) \neq 0$

, where d is the Brouwer topological degree.

Then the equation Lx = Nx has at least one solution in $DomL \cap G$.

Now we prove (a). For this purpose, let (x, λ) be any solution to

$$Lx = \lambda Nx,$$

then (x, λ) is a solution to BVP

$$(E) \qquad \qquad \dot{x} = \lambda f(t, x_i)$$

$$(B) x_0 = x_T$$

Let $M = \sup_{\|x\| \leq r} \langle Ax, x \rangle$, then since $\lim_{\|x\| \to \infty} \langle Ax, x \rangle = \infty$, for $M_0 \rangle M$, there exists $r_0 \rangle r$ such that $\langle Ax, x \rangle \rangle M_0$ whenever $\|x\| \rangle r_0$. Let us define $v : R \to R$ by

$$v(t) = \langle Ax(t), x(t) \rangle$$
 for all $t \in \mathbb{R}$

Then, v is of class C' and T-periodic such that

$$\dot{v}(t) = 2 \langle Ax(t), \dot{x}(t) \rangle$$

= $2\lambda \langle Ax(t), f(t, x_t) \rangle$ for all $t \in \mathbb{R}$

For every value t_0 of t such that

$$v(t_0) = \sup_{t \in \mathbb{R}} v(t) = \sup_{t \in [0,T]} v(t),$$

we have $\dot{v}(t_0) = 0$ If $||x(t_0)|| > r$, then $\langle f(t_0, x(t_0)), Ax(t_0) \rangle > 0$.

Thus

$$\dot{v}(t_0) = 2\lambda \langle Ax(t_0), f(t_0, x_0) \rangle \rangle 0,$$

which is impossible. Hence $||x(t_0)|| \langle r$.

If there exists t_i in [0,T] such that $||x(t_i)|| > r_0$ then

$$v(t_i) = \langle Ax(t_i), x(t_i) \rangle \rangle M_0$$

and so

$$M_0 \langle v(t_1) \leq v(t_0) = \langle Ax(t_0), x(t_0) \rangle \langle \sup_{\|x\| \leq r} \langle Ax, x \rangle = M$$

which is impossible. Hence, we have $||x(t)|| \leq r_0$ for all $t \in [0,T]$,

Wan Se Kim and Byung Soo Lee

i.e.,

$$||x|| = \sup_{t \in [0,T]} ||x(t)|| < r_0$$

for every possible solution to (III.2). Therefore every solution (x, λ) of (III.2) is such that $x \in \partial G$ where G is an open ball in C_T with radious $p \rangle r_0$ and centered at origin.

Now we will show that the condition (b) is satisfied, Since $\langle f(t, x_i), Ax \rangle > 0$ for $||x|| \ge r$, we obtain

$$\langle Aa, \int_0^T f(t, a)dt \rangle > 0$$

for every $a \in R^n$ such that $||a|| \ge r$ and hence $QNx \ne 0$ for each $x \in KerL \cap \partial G$ and for each $\lambda \in]0$, $I[, (1-\lambda)Ac + \lambda QN(c) = 0$ for every $c \in \partial G \cap KerL$. Hence, by the homotopy invariant property of Brouwer degree, we have

$$d([1-\lambda)JA + \lambda JQN] \mid_{KerL}, G \cap KerL, 0)$$

= $d(JQN \mid_{KerL}, G \cap KerL, 0)$
= $d(JA \mid_{KerL}, G \cap KerL, 0)$
= $[sgn(detJ')] [sgn(detA')]$
 $\neq 0,$

Since A is positive definite linear operator, where J', A' are the matrix representation of J and A in same some basis in *KerL*. Thus

Hence the conditions (a), (b) are satisfied and our proof is completed.

Example

$$\dot{x}(t) = ax(t) + bx(t-r) + cx^{3}(t) + dx^{3}(t-r) + e(t),$$

where a, b, c, d are constant with |c| > |d| and $e: R \to R$ is continuous and *T*-periodic, has at least one *T*-periodic solution.

REFERENCES

- J Mawhin : Topological degree methods in nonlinear boundary value problems CBMS Regional Conterence Series in Math. No. 40, Amer. Math. soc. Providence, R.I., 1979
- 2 _____ and R.E Gains : Coincidence degree and nonlinear differential equations, Lecture Note, Math. vol 568, Springer-Verlag, 1977
- and N.Rouche Ordinary differential equations, Stability and Periodic solutions, Pitman Advanced Pub Program, Boston, 1980

Department of Mathematics Dong=A University Pusan 604=714, Korea

Department of Mathematics Kyungsung University Pusan 608-736, Korea