A Remark on the Existence of Periodic Solutions to the First Order Ordinary Differential Equations

Wan Se Kim and Byung Soo Lee

I. Introduction

It is know that the system of the form
(E)

$$
\dot{x}=f(t, x)
$$

where $f: R \times R^{n} \rightarrow R^{n}$ is continuous and T-penodic with respect to t for some positive constant T, has at least one T-periodic solution if we assume
$\left(\mathrm{H}_{1}\right)$ The solution to IVP for (E) are unique
(or $\left\langle f\left(t, x_{1}\right)-f\left(t, x_{2}\right), x_{1}-x_{2}\right\rangle\left\langle 0, t \in[0, T], x_{1}, x_{2} \in R\right.$ with $\|\mathrm{x}\|=\mathrm{r}$ for some $r>0$),

It is natural to ask whether we can find an appropriate sign condition which is independenpent of $\left(\mathrm{H}_{2}\right),\left(\mathrm{H}_{2}\right)$ and still guarantees the existence of T-pernodic solution to the system (E). The answer is affirmative when we replace $\left(\mathrm{H}_{2}\right)$ by a generalized sign condition far away from the origin without assuming $\left(\mathrm{H}_{1}\right)$.

In section 1, we give the answer to our question in BVP view. More precisely, we investigate the existence of T-periodic solutions
to the BVP

$$
\begin{aligned}
& \dot{x}=f(t, \quad x) \\
& x(0)=x(T)
\end{aligned}
$$

, where $x=x(t), f: R x R^{\prime \prime} \rightarrow R^{n}$ is T-periodic with respect to t and continuoustor f is a Caratheodory function having sublinear growth in x). The proof is based on Leray-Schauder's continuation theorem.

In section 2, we extend our result to the delay functional differential equations. More precisely, we devote ourselves to prove the existence of T-periodic solitions to the BVP

$$
\begin{aligned}
& \dot{x}=f\left(t, \quad x_{i}\right) \\
& x_{0}=x_{T}
\end{aligned}
$$

, where $x=x(t), x_{i}:\left[\begin{array}{ll}-r & 0\end{array}\right] \rightarrow R^{\prime \prime}, \quad x_{i}(s)=x(t+s)$ and $f: R x C_{r} \rightarrow R^{\prime \prime}$ is a continuous function and takes bounded sets into bounded sets. Here r is a non-megative constant and C_{r} is the Banach space of continuous mappings $h:\left[\begin{array}{ll}-r & 0\end{array}\right] \rightarrow R^{\prime \prime}$ with the norm

$$
\|h\|=\sup _{s \in[-, 0]}|h(s)| .
$$

The proof is based on Mawhin's continuation theorem.
Our results are related to these results in [2], [3] which are derived from the method of guiding functions.

II. First Order Ordinary Differential Equations.

Let C_{r} be the Banach space of mappings $x: R \rightarrow R^{n}$ which are continuous and T-periodic with the norm

A Remark on the Existence of Penodic Solutions to the First Order Ordinary Differential Equations

$$
\|x\| C_{T}=\sup _{t \in R}\|x(t)\|
$$

$\|x(t)\|$ is the Euclidean norm of $x(t)$. Let ϕ_{2} and $\mu_{,} \mathrm{i}=1,2, \cdots, \mathrm{~s}$ be linear independent solutions to the T-periodic, homogeneous differential equations $\dot{x}=A(t) x$ and its adjoint $\dot{y}=-A^{*}(t) y$ with $A: R \rightarrow R^{n}$ continuous and T-periodic, respectively. By Gram Schmidt procedure, we may assume

$$
\left\langle\phi_{\phi}, \phi_{1}\right\rangle=\left\langle\mu, \mu_{y}\right\rangle=\delta_{n} \quad 1 \leq i, j \leq s .
$$

Define

$$
\begin{aligned}
& P: C_{r} \rightarrow C_{T} \text { by } \quad P_{x}=\sum_{l, l s}\left\langle x, o_{r}\right\rangle_{\phi} \\
& Q: C_{r} \rightarrow C_{7} \text { by } P_{x}=\sum_{l \leq \leq \leq s}\langle x, \mu\rangle_{\mu} .
\end{aligned}
$$

Then they are projections.
Proposition. Suppose $A(t)$ and $b(t)$ are continuous and T-periodic on R. The euqation

$$
\begin{equation*}
\dot{x}=A(t) x+B(t) \tag{II.1}
\end{equation*}
$$

has a T-periodic solution if and only if

$$
\begin{equation*}
Q b=0 . \tag{II.2}
\end{equation*}
$$

If (II.2) is satisfied, then (IL.1) has unique T-periodic solution such that $P x=0$.

$$
\begin{aligned}
& \text { Now let } C_{1, \ldots p}=\left\{x \in C_{7} \mid P_{x}=0\right\} \\
& C_{T i-2}=\left\{x \in C_{1} \mid Q x=0\right\} .
\end{aligned}
$$

Define $K: C_{r i-Q} \rightarrow C_{T I-A}, b \rightarrow x$, where x is a solution to (II.1). Then K is well-defined, linear and $K(0)=0$. And since $I-Q: C_{+} \rightarrow C_{T I-Q}$
is linear, $K(I-Q): C_{F} \rightarrow C_{T t-p}$ is well-defined, linear and bounded. Moreover, $K(I-Q): C_{r} \rightarrow C_{T}$ is a compact operator.
You may find the above mentioned results in [3].
Lemma II. 1 Let $F:[0, T] \mathrm{xR}^{\mathrm{n}} \rightarrow R,{ }^{n}(t, x) \rightarrow F(t, x)$ be contiouous function, then $H: C_{T} \rightarrow C_{T}, x \rightarrow H x=F(\cdot, x(\cdot))$ is a continuous and maps bounded sets into bounded sets.

Lemma 11.2 If A is a positive definite operator, then there is $c\rangle 0$ such that $\langle A x, x\rangle\rangle c\|x\|^{2}$ for all $x \in R^{n}$,

Theorem IL. 1 Let $f: R \times R^{n} \rightarrow R^{n}$ be continuous and T-periodic function with respect to t. Let $A: R^{n} \rightarrow R_{x}$ be symmetric and positive definite linear operator and $\langle f(t, x), A x\rangle>0$ for $\|x\|\rangle r$ for some $r>0$. Then BVP

$$
\begin{equation*}
\dot{x}=f(t, \quad x) \tag{E}
\end{equation*}
$$

$$
\begin{equation*}
x(0)=x(T) \tag{B}
\end{equation*}
$$

has at least one solution.
Proof Let $D(L)=C_{T \cap} C^{2}[0, T]$. Define an operator $L: D(L) \subset C_{T}$ $\rightarrow C_{T}$ by $L x=\dot{x}-x$ for $x \in D(L)$, then $\dot{x}-x=0$ has only trivial T-periodic solution which implies $P=Q=0$. Hence for each $f \in C_{T}$ the T-periodic solution to $\dot{x}=x+f$ exists unquely.
Therefore $L^{-1}: C_{7} \rightarrow C_{7}, f \rightarrow x$ exists and is a compact operator. Now consider a substitution operator

$$
N: C_{T} \rightarrow C_{T}, x \rightarrow-x(\cdot)+f(\cdot, x(\cdot))
$$

Then N is continuous and maps bounded sets into bounded sets. Therefore, $x \in C_{T}$ is a solution to the $\mathrm{BVP}(\mathrm{B})(\mathrm{E})$ if and only if

A Remark on the Existence of Periodic Solutions to the First Order Ordmary Differential Equations

$x \in D(L)$ and x satisfies

$$
\begin{equation*}
L x=N x, \text { or equivalently } \tag{II.3}
\end{equation*}
$$

$$
\begin{equation*}
x=L^{-7} N x \tag{II.4}
\end{equation*}
$$

Since L^{-1} is a completely continuous and N is continuous and maps bounded sets into bounded sets, the composition $L^{-1} N: C_{T} \rightarrow C_{T}$ is contiouous and compact

By using Leray-Schauder's degree arguement, if all possible solution x to the family of equations

$$
\begin{equation*}
x=L^{-1} N x, \quad 0 \leq \lambda \leq 1 \tag{II.5}
\end{equation*}
$$

are buonded in C_{T} independently of λ, then (II.4) has a solution. If (x, λ) solves (II.5), then (x, λ) solves

$$
\begin{equation*}
L x=\lambda N x, \quad 0 \leq \lambda \leq 1 \tag{II.6}
\end{equation*}
$$

and x is a solution to the T-periodic BVP of the equation

$$
\begin{equation*}
\dot{x}=(1-\lambda) x+\lambda f(t, x), \quad 0 \leq \lambda \leq 1 \tag{II.7}
\end{equation*}
$$

When $\lambda=0$ by our assumption, we have only trivial T periodic solution. Thus the proof will be completed if we show that the solution to (II.6), for $0<\lambda \leq 1$, are bounded in C_{r} independently of λ To this end, define $\phi: R^{\mu} \rightarrow \mathrm{R}$ by $\phi(x)=\langle A x, x\rangle$. Let $M=\underset{\sim H}{ } \sup _{\boldsymbol{H}} \phi(x)$, then since $\lim _{\| x \rightarrow+\infty} \phi(x)=\infty$, for $\left.M_{0}\right\rangle M$, there $r_{0}>r$ such that $\phi(x)>M_{0}>0$ whenever $\|x\|>r_{0}$.

We prove that for any possible T-periodic solution x to (II.7), we have
(II.8) $\quad\|x(t)\| \leq r_{0}$ for all $t \in[0, T]$

To do this, define $v: R \rightarrow R, t \rightarrow \phi(x(t))$, then v is of class C^{1} and T-periodic and such that

$$
\begin{align*}
\dot{v}(t)=2\langle A x(t), & \dot{x}(t)\rangle \tag{II.9}\\
& =2(1-\lambda)\langle A x(t), x(t)\rangle+2 \lambda\langle A x(t), \quad f(t, x(t))\rangle
\end{align*}
$$

for all $t \in \mathrm{R}$. For every value t_{θ} of t such that

$$
v\left(t_{0}\right)=\sup _{t \in K} v(t)=\sup _{t \in[0, T]} v(t)
$$

we have $v\left(t_{0}\right)=0$, since v can be estended on the whole of R. If $\left.\left\|x\left(t_{0}\right)\right\|\right\rangle r_{0}$ then $\left.\left.\left\langle f\left(t_{0}\right)\right), \Delta x\left(t_{0}\right)\right\rangle\right\rangle 0$. Thus

$$
v\left(t_{0}\right)=2(1-\lambda)\left\langle A x\left(t_{0}\right), \quad x\left(t_{0}\right)\right\rangle+2 \lambda\left\langle A x\left(t_{0}\right), \quad f\left(t_{a} \quad x\left(t_{0}\right)\right\rangle\right\rangle 0
$$

which is impossible. Hence $\left\|x\left(t_{0}\right)\right\| \leq r$.
If there exists $t_{1} \in[0, T]$ such that $\left.\left\|x\left(t_{1}\right)\right\|\right\rangle r_{0}$, then $v\left(t_{1}\right)=\left\langle A x\left(t_{1}\right), x\left(t_{1}\right)\right\rangle$
$\rangle M_{0}$ and so $M_{0}\left\langle v\left(t_{1}\right) \leq v\left(t_{0}\right)=\left\langle A x\left(t_{0}\right), x\left(t_{0}\right)\right\rangle \leq_{\|_{r}} \sup _{\langle r}\langle A x(t), x(t)\rangle=M\right.$ which is a contradiction. Hence we have $\|x(t)\| \underline{\|}_{0} \mid r_{0}$ for all $t \in[0, T]$ for every possible T-periodic solution to (II.7).
So we have that every solution (x, λ) to (II.5) has an a priori hound in C_{T} independently of λ. Therefore, by Leray-schauder's continuation theorem, $\dot{x}=L^{-1} N x$ has a solution, or $\dot{x}=f(t, x)$ has a solution in C_{T}.

Corollary II. 1 Let $f: R x R^{n} \rightarrow R^{n}$ be continuous and T-periodic function with respect to t. Let $\langle f(t, x), x\rangle\rangle 0$ for $\|x\| \geq r$ for some $r>0$. Then BVP (E) (B) has at least one solution.

Theorem II.2. Let $f: R \times R^{\prime \prime} \rightarrow R^{\prime \prime}$ be continuous and T-periodic function with respect to t with $\|f(t, x)\| \leq \alpha\|x\|+\beta$ for some α,

A Remark on the Existence of Periodic Solutions to the First Order Ordinary Differentai Equations

$0\langle\alpha \backslash I / T, \beta\rangle 0$ for all $(t, x) \in R x R^{n}$. Let $A: R^{n} \rightarrow R^{n}$ be symmetric linear operator and has no eigenvalue with zero real part, and $\langle f(t$, $x), A x\rangle>0$ for $\|x\|>r$ for some $r>0$. Then BVP (B) (E) has at least one solution in C_{T}.

Proof Let $n(L)=C_{T} \cap C^{\prime}[0, T]$. Define an operator $L: D(L) \subseteq C_{T}$ $\rightarrow C_{T}$ by $L x=\dot{x}-\varepsilon A x$, where ε such that $\varepsilon T\|A\|+\alpha T<1$, for $x \in D(L)$, then for each $f \in C_{T}$, the T-periodic solution x to $\dot{x}=\varepsilon A x+f$ exists uniquely. Therefore $L^{-1}: C_{T} \rightarrow C_{T}, f \rightarrow x$ exists and is a compact operator. Now we consider a substitution operator

$$
N: C_{T} \rightarrow C_{7}, x \rightarrow-\varepsilon A x(\cdot)+f(\cdot, x(\cdot))
$$

Then N is continuous and maps bounded sets into boumded -sets. Therefore, $x \in C_{T}$ is a solution to the BVP (B) (E) if and only if $x \in D(L)$ and x satisfies

$$
\begin{align*}
& L x=N x_{t} \quad \text { or } \tag{IL.10}\\
& x=L^{-1} N x . \tag{II.11}
\end{align*}
$$

Since L^{-1} is a completely continuous and N is contincous and maps bounded sets into bounded sets, the composition $L^{-i} N: C_{T} \rightarrow C_{T}$ is continuous and compact. By using Leray-Shcauder's degree arguement, if all solution x to the family of equations.

$$
\begin{equation*}
x=\lambda L^{-1} N x, \quad 0 \leq \lambda \leq 1, \tag{II.12}
\end{equation*}
$$

are bounded in C_{7} independently of λ, then (II.10) has a solution. If (x, λ) solves (II.12), then (x, λ) solves

$$
\begin{equation*}
L x=\lambda N x, \quad 0 \leq \lambda \leq 1, \tag{II.13}
\end{equation*}
$$

and x is solution to the T-periodic BVP of the equation.

$$
\begin{equation*}
\dot{x}=(1-\lambda) \varepsilon A x+\lambda f(t, x), \quad 0 \leq \lambda \leq 1 . \tag{II.14}
\end{equation*}
$$

If $\lambda=0$ we have only trivial T-penodic solution. Thus, the proof will be completed if we show that the solution to (II.12), for $0<\lambda \leq 1$, are bounded in C_{7} independently of λ. To this end, let (x, λ) be any solution to (II.13) with $0<\lambda \leq 1$ then

$$
\begin{aligned}
\|\dot{x}\| & =(1-\lambda)\|\varepsilon A x\|+\lambda\|f(t, x)\| \quad(0\langle\lambda \leq 1) \\
& \leq\|\varepsilon A x\|+\|f(t, x)\| \\
& \leq \varepsilon\|A\|\|x\|+\alpha\|x\|+\beta \\
& =(\varepsilon\|A\|+\alpha)\|x\|+\beta .
\end{aligned}
$$

If $\|x(t)\|\rangle_{r}$ for all $t \in[0, T]$, then

$$
\begin{aligned}
0 & =\int_{0}^{T}\langle x(t), \quad A x(t)\rangle d t \\
& \left.=(1-\lambda) \varepsilon \int_{0}^{T}\langle A x(t), \quad A x(t)\rangle d t+\lambda \int_{0}^{T}\langle f(t, \quad x(t)), A x(t)\rangle d t\right\rangle 0
\end{aligned}
$$

which is impossible. Hence there is a $t_{0} \in[0, T]$ such that $\left\|x\left(t_{0}\right)\right\|<r$. Since $x(t)=x\left(t_{0}\right)+\int_{t_{0}}^{t} x(t) d t, \quad\|x\| \leq r+\int_{0}^{T}\|\dot{x}\| d t=r+T\|\dot{x}\|$. Therefore,
$\|x\| \leq r+[\varepsilon T\|A\|+\alpha T]\|x\|+\beta T$, or $[1-\varepsilon T\|A\|-\alpha T]\|x\| \leq r+\beta T$.

Since $\varepsilon T\|x\|+\alpha T<1$, we have

$$
\|x\| \leq(\gamma+\alpha T) /(1-\varepsilon T\|A\|-\alpha T) .
$$

Hence, we have that every solution (x, λ) to (II.12) has an a priori bound in C_{T} independently of λ. Therefore, by the Leray-Schauder's continuation Theorem, $x=L^{-t} N x$ has a solution, or $\dot{x}=f(t, x)$ has a solution in C_{T}.

Corollary II. 12 Let $f: R x R^{u} \rightarrow R^{u}$ be continuous function and

A Remark on the Existence of Perodic Solutions to the First Order Ordinary Differental Equations

T-perrodic function with respect to t with $\|f(t, x)\| \leq \alpha\|x\|+\beta$ for some $\alpha, 0\left\langle\alpha\langle 1, \beta\rangle 0\right.$ for all $(t, x) \in R x R^{\prime \prime}$. And $\langle f(t, x), x\rangle 0$ for $\|x\|>r$, for some $r>0$.

Then BVP (B) (E) has at least one solution in C_{T}.

$$
\begin{array}{ll}
\text { Example } & \dot{x}=a x+b x^{3}+e(t) \\
& x(0)=x(T),
\end{array}
$$

where $e: R \rightarrow R$ is continuous, T-periodic and $b>0$, has at least one T-periodic solution.

III. First Order Ordinary Delay Functional Differential

Equations

Let us denote by C_{T} the Banach space of continus and T-periodic mappings $x: R \rightarrow R^{n}$ with the norm $\|x\| C_{7}=\sup _{i \in R}\|x(t)\|$ where $\|\cdot\|$ is the Eucidean norm in R^{*}. For some $r>0$ let C_{r} be the Banach space of continuous mapping $\phi:[-r, 0] \rightarrow R^{\prime \prime}$ with the norm $\|\phi\|_{C_{r} \in[-r, 0]} \sin ^{\|}\|\phi(\theta)\|$. When $r=0, C_{r}$ is naturally identified to R^{n} If $x \in C_{T}$ and $t \in T$, we shall denote by x_{1} the element of C_{r} defined by

$$
x_{t}:[-r, 0] \rightarrow R^{n}, \quad \theta \rightarrow x(t+\theta) .
$$

We note that,

$$
\left\|x_{i}\right\| C_{r}=\sup _{\theta \in[-r, 0]} \| x\left(t+\theta\left\|\leq \sup _{t \in R}\right\| x(t)\|=\| x \| C_{t^{*}}\right.
$$

When $r=0$ the mapping x, will be naturally identified with the element $x(t)$ of R^{\prime}. Moreover we shall sometimes identify, without further comment, a constant mapping in C_{T} or C, with the element of R^{n}
given by its constant value.
Let $\quad f: R \times C_{r} \rightarrow R^{n},(t, \phi) \rightarrow f(t, \phi)$
be T-periodic with respect to t, continuous and take bounded sets into bounded sets. Let us consider the functional differential equation.

$$
\begin{equation*}
x=f\left(t, \quad x_{i}\right) \tag{III.I}
\end{equation*}
$$

If we define the Banach space by $X=\left\{x \leqslant C_{r}: x_{0}=x_{r}\right\}$ and

$$
\begin{aligned}
& \operatorname{DomL}=X \cap C^{[}\left[\begin{array}{ll}
0, & T
\end{array}\right] \cap C_{T} \\
& L: \operatorname{DomL} L C_{T}, x \rightarrow x, \\
& N: C_{T} \rightarrow C_{7}, x \rightarrow f(\cdot, x),
\end{aligned}
$$

then KerL $=R^{n} \quad I m L=\left\{y \in C_{T}: \int_{0}^{1} y(s) d s=0\right\}$.
Let us introduce the contmuous projectors

$$
\begin{aligned}
& P: C_{T} \rightarrow C_{T}, x \rightarrow x(0) \\
& Q: C_{T} \rightarrow C_{T}, x \rightarrow I / T \int_{0}^{T} x(s) d s .
\end{aligned}
$$

Then for each $x \in C_{T}$

$$
\|Q x\|_{C_{T}}<\|x\|_{C_{T}}
$$

and $I m Q$ is the subspace of C_{r} of constant mappings, and the following sequence is exact;

$$
C_{T} \xrightarrow{P} \operatorname{DomL} \subset C_{T} \xrightarrow{L} \mathrm{C}_{T}^{Q} \rightarrow C_{T}
$$

which implies

$$
\operatorname{Ker} L=\operatorname{ImP}, \quad I m L=\operatorname{Ker} Q,
$$

A Remark on the Existence of Periodic Solutions to the First Order Ordinary Differental Equations

and
$C_{T}=\operatorname{Im} P \oplus \operatorname{Ker} P=\operatorname{KerL}\left(\oplus \operatorname{Ker} P, \quad C_{T}=\operatorname{Im} Q \oplus \operatorname{KerQ} Q=\operatorname{ImQ} Q \operatorname{Im} L\right.$
as topological sums.
Thus we have $C_{T} / I m L \simeq I m Q$,
$\operatorname{Im} P=\{x(0) ; x \in P\}=R^{n}$,
$\operatorname{Im} Q=\left\{I / T \int_{0}^{T} x(s) d s ; x \in C_{T}\right\}=R^{\prime \prime}$.
$\operatorname{dim} \operatorname{Ker} L=n=\operatorname{dim} \operatorname{Im} Q=\operatorname{dim} C_{T} / \operatorname{Im} L=\operatorname{dim} \operatorname{CoKer} L<\infty, L$ is linear and ImL is closed in C_{T}. Hence L is Fredholm mapping of index zero and there exists an isomorphism

$$
J: \operatorname{Im} Q \rightarrow K e r L .
$$

If we consider the restriction

$$
L_{P}=\left.L\right|_{\text {Dom } \cap K e r P}: \operatorname{DomL\cap KerP} \rightarrow I m L
$$

then L_{r} is bijective, so that its algebraic inverse

$$
K_{P}=L_{P}^{-1}: I m L \rightarrow D o m L \cap \operatorname{Ker} P
$$

is defined and $K_{r}(y)(t)=x(t)=\int_{0}^{T} y(s) d s$
We will denote $K_{P Q}: C_{r} \rightarrow \operatorname{DomL} \cap K e r P$ the generalized inverse of L defined by $K_{P Q}=K_{P}(I-Q)$.
Then $K_{P Q}$ is a compact operator by Arzela-Ascolt theorem. $K_{P Q} N$ takes bounded sets into relatively compact sets since N takes bounded sets into bounded sets. You may find the following Lemma in Mawhin [1], Mawhin and Gains [2].

Lemma III. 1 With the assumption and notations above, N is L-compact on each bounded subset of C_{T}.

Theorem MII. 1 Let $f: R x C_{r} \rightarrow R^{n}$ be T-periodic with respect to t, continuous and takes bounded sets into bounded sets. Let $A: R^{\prime \prime} \rightarrow R^{\prime \prime}$ be a symmetric and positive definite linear operator such that $\langle f(t$, $\left.\left.x_{i}\right), A x\right\rangle>0,\|x\| \geq r$ for some $r>0$. Then BVP

$$
\begin{equation*}
\dot{x}=f\left(t, \quad x_{1}\right) \tag{E}
\end{equation*}
$$

(B)

$$
x_{0}=x_{r}
$$

has at least on solution
Proof. We will apply Mawhin's continuation theorem to our proof. Now it is easy to see $x \in C_{T}$ is a solution BVP (E) (B) if and only if $x \in D o m I$ and

$$
\begin{equation*}
L x=N x . \tag{III.1}
\end{equation*}
$$

Since L is a Fredholm mapping of index zero and N is L-compact, by Mawhin's continuation theorem if there exits a bounded open set G in C_{T} such that
(a) for each $\lambda \in] 0, \lambda[$, every solution x of $L x=\lambda N x$
is such that $x \in \partial G$.
(b) $\mathrm{QNX} \neq 0$ for each $x \in K e r L \cap \partial G$ and $d\left(\left.J Q N\right|_{K e r L}, \quad G \cap K e r L, \quad 0\right) \neq 0$,where d is the Brouwer topological degree.
Then the equation $L x=N x$ has at least one solution in $D o m L \cap G$.
Now we prove (a). For this purpose, let (x, λ) be any solution to
(III.2)

$$
L x=\lambda N x,
$$

A Remark on the Existence of Pertodic Solutions to the First Order Ordinary Differental Equations

then (x, λ) is a solution to BVP
(E)

$$
\begin{gathered}
\dot{x}=\lambda f\left(t, \quad x_{i}\right) \\
x_{0}=x_{T}
\end{gathered}
$$

(B)

Let $M=\sup _{\|x\|, r}\langle A x, x\rangle$, then since $\lim _{\| \rightarrow \infty}\langle A x, x\rangle=\infty$, for $\left.M_{0}\right\rangle M$, there exists $\left.r_{o}\right\rangle r$ such that $\left.\langle A x, x\rangle\right\rangle M_{o}$ whenever $\left.\|x\|\right\rangle r_{0}$.
Let us define $v: R \rightarrow R$ by

$$
v(t)=\langle A x(t), x(t)\rangle \text { for all } t \in R
$$

Then, v is of class C^{\prime} and T-periodic such that

$$
\begin{aligned}
\dot{v}(t) & =2\langle A x(t), \quad \dot{x}(t)\rangle \\
& =2 \lambda\left\langle A x(t), \quad f\left(t, \quad x_{j}\right\rangle\right\rangle \text { for all } t \in R
\end{aligned}
$$

For every value t_{0} of t such that

$$
v\left(t_{0}\right)=\sup _{i \in K} v(t)=\sup _{t \in[0, T]}^{v(t)}
$$

we have $\dot{v}\left(t_{0}\right)=0$ If $\left.\left\|x\left(t_{0}\right)\right\|\right\rangle r$, then $\left.\left\langle f\left(t_{0}, \quad x\left(t_{0}\right)\right), A x\left(t_{0}\right)\right\rangle\right\rangle 0$.
Thus

$$
\left.\dot{v}\left(t_{0}\right)=2 \lambda\left\langle A x\left(t_{0}\right), \quad f\left(t_{t_{3}}, x_{t a}\right)\right\rangle\right\rangle 0,
$$

which is impossible. Hence $\left\|x\left(t_{0}\right)\right\|<r$.
If there exists t_{1} in $[0, T]$ such that $\left.\left\|x\left(t_{1}\right)\right\|\right\rangle r_{b}$ then

$$
\left.v\left(t_{i}\right)=\left\langle A x\left(t_{1}\right), \quad x\left(t_{1}\right)\right\rangle\right\rangle M_{0}
$$

and so

$$
M_{0}\left\langle v\left(t_{1}\right) \leq v\left(t_{0}\right)=\left\langle A x\left(t_{0}\right), \quad x\left(t_{0}\right)\right\rangle \leq_{\|x\|_{i}}\langle A x, x\rangle=M\right.
$$

which is impossible. Hence, we have $\|x(t)\| \leq r_{0}$ for all $t \in[0, T]$,
i.e.,

$$
\|x\|=\sup _{t \in[0,7]}\|x(t)\|\left\langle r_{0}\right.
$$

for every possible solution to (III.2). Therefore every solution (x, λ) of (III.2) is such that $x \in \partial G$ where G is an open ball in C_{T} with radious $p>r_{a}$ and centered at origin.
Now we will show that the condition (b) is satisfied, Since $\left.\left\langle f\left(t, x_{i}\right\rangle, A x\right\rangle\right\rangle 0$ for $\left.\|x\|\right\rangle r$, we obtain

$$
\left\langle A a, \int_{o}^{T} f(t, a) d t\right\rangle>0
$$

for every $a \in R^{n}$ such that $\|a\| \geq r$ and hence $Q N x \neq 0$ for each x $\in K$ erln $\cap \partial G$ and for each $\lambda \in] 0, i[,(i-\lambda j A c+\lambda Q N(c)=0$ for every $c \in \partial G \cap K e r L$. Hence, by the homotopy invariant property of Brouwer degree, we have

$$
\begin{aligned}
& \left.d([1-\lambda) J A+\lambda I Q N] I_{\text {KerL }}, \quad G \cap K e r L, 0\right) \\
& =d\left(\left.J Q N\right|_{\text {KerL }} ^{\prime} \quad G \cap K e r L, 0\right) \\
& =d\left(\left.J A\right|_{\text {KerL }} ^{\prime} \quad G \cap K e r L, 0\right) \\
& \left.=\left[\operatorname{sgn}(\operatorname{det}]^{\prime}\right)\right]\left[\operatorname{sgn}\left(d e t A^{\prime}\right)\right] \\
& \neq 0,
\end{aligned}
$$

Since A is positive definite linear operator, where J^{\prime}, A^{\prime} are the matrix representation of J and A in same some basis in KerL. Thus

$$
\left.\left.d \sigma Q N\right|_{K e r L}, G \cap \text { KerL, } \quad 0\right) \neq 0
$$

Hence the conditions (a), (b) are satisfied and our proof is completed.

A Remark oni the Existence of Penodic Solutions to the First Order Ordinary Differental Eouations

Example

$$
\dot{x}(t)=a x(t)+b x(t-r)+c x^{3}(t)+d x^{3}(t-r)+e(t),
$$

where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are constant with $|c|\rangle|d|$ and $e: R \rightarrow R$ is continuous and T-periodic, has at least one T-periodic solution.

REFERENCES

- jMawhm: Topologeai degree nethods wheninear wonnary value problems CBMS Regional Conterence Sertés in : Tath Nis 40, Amer. Math soc. Providence. R.Y. 1979

2 \qquad and R.E Gans: Comodence degree and nonhnear differential equations, Lecture Note, Math. vol 568, Sproger-Verlag, 1977
3. \qquad and N.Rouche , Ordinary differential equations, Stabsity and Periodic solutions,

Patman Advanced Pub Progam, Busiuri, Deg

Department of Mathematics
Dong-A Unversit/
Pusan 604-714, Kn: 2 a
Department of Mathematics
Kyungsung Universty
Pusan 608-736, Korea

