Pusan Kyöngnam Mathematical Journal Vol.6, No.1, pp.1~8 1990

On Singular Compactifications

Keun Park and Je Yoon Lee

1. Introduction

In [8], J.P.Guglielmi proposed the open question under which condition on X, αX is equal to $\sup\{X \cup_t S(f) \mid \alpha X \ge \bigcup_t S(f)\}$ for any compactification αX of X. Since $\alpha X \ge \bigcup_t S(f)$ if and only if $f \in S^{\alpha}$, J.P.Guglielmi's problem can be restated as follows; Under which condition on X, is αX equal to $\sup\{X \cup_t S(f) \mid f \in S^{\alpha}\}$ for any conpactification αX of X? R.E.Chandler[4] showed that if X is non-pseudocompact, then the Stone-Cech compactification of X is equal to $\sup\{X \cup_t S(f) \mid f \in S^*\}$ and also he showed that if X is a retractive space, then the Stone-Cech compactification of X is equal to $\sup\{X \cup_t S(f) \mid f \in S^*\}$.

In this note, we give some conditions under which αX is equal to $\sup\{X \cup S(f) \mid f \in S^{\alpha}\}$ for any compactification αX of X, and give some examples.

2 Singular compactifications

Throughout this note, the topological space X is assumed to be locally compact and all topological spaces are assumed to be Hausdorff.

In L2], the singular set S(f) is defined $\cap \{Cl(f(X-F)) \mid F \text{ is compact} in X\}$ for a continuous map of X to Y, where "Cl" denotes the closure operater. And f is called singular if S(f)=Y. For a singular

The work supported by the korean Ministry of Education grants 1989.

map f of X to a compace space Y, a Hausdorff compactification, which is called a singular compactification, is defined as follows; Let the open sets in X be as they were in the original topology on X. For $p \in Y$, a basic neighborhood of p is defined to be any set of the form $U \cup f'(U) = F$ where U is an open neighborhood of p in Y. This topological space on $X \cup S(f) = X \cup Y$ is denoted by X $\cup S(f) = X \cup Y$ is denoted by $X \cup S(f)$ ([4], [5]).

We will denote $C^*(X)$ the set of all continuous and bounded map of X to R(the real line with the usual topology) and C^a the set of all continuous and bounded maps of X to R with the extension to a Hausdorff compactification αX of X. Let $S^*=\{f \in C^*(x) \mid f \text{ is} singular S^*=\{f \in C^* \mid f \text{ is singular}\}\)$ for any compactification αX of X. Then, it is true that $S^*\neq \phi$ and $S^*\neq \phi$ since all constant map are singular.

In 1982. B J.Ball and S.Yokura[1] introduced the concept of determining set. For each subset F of C*(X), let K(F) be the subfamily of the family of all Hausdorff compactifications of X such that K(F) consists of all compactifications of X to which each element of F can be extended. If K(F) has the smallest element αX , then αX is said to be determined by F, and denoted by $\alpha_F X$. It is easily shown that every subset of C*(X) determines a compactification of X if X is locally compact. And then, he showed the following theorem.

Theorem 2.1 [1]. For any subset F of $C^*(X)$ and any compactification αX of X, the followings are equivalent.

(1) F determines a compactification and $\alpha_F X = \alpha X$.

(2) $\mathbf{F} \subset C^{\alpha}$ and \mathbf{F}^{α} separates points of $\alpha X - X$ where \mathbf{F}^{α} is the subset $\{f^{\alpha} \in C^{*}(\alpha X) : f^{\alpha} \text{ is an extension of } f \text{ and } f \in \mathbf{F}\}$ of $C^{*}(\alpha X)$.

Theorem 2.2. Let $f \in C^*$. Then, $X \cup_i S(f)$ is the smallest compatification of X to which f can be extended.

Proof. Let $\alpha X = X \cup S(f)$ and define $f^{\alpha} : \alpha X \longrightarrow S(f)$ given by $f^{\alpha}(x) = f(x)$ if $x \in X$ and $f^{\alpha}(x) = x$ otherwise. Then, it is easily shown that f^{α} is a continuous extension of f and it is trivial that f^{α} separates points of $\alpha X - X$. Since X is locally compact, αX is the smallest compactification of X to which f can be extended, by theorem 2. 1.

Corollary 2.3. For any subset F of S*, $\sup\{X \cup_i S(f) \mid f \in F\}$ is the smallest compactification of X to which F can be extended.

Proof. Since $\sup\{X \cup_i S(f) \mid f \in F\} \ge X \cup_i S(f)\}$ for any f in F, it follows that F can be extended to $\sup\{X \cup_i S(f) \mid f \in F\}$. If αX is a Hausdorff compactification of X to which F can be extended, then for any f in F, $\alpha X \ge X \cup_i S(f)$ by theorem 2.2. Hence, we have that $\alpha X \ge \{X \cup_i S(f) \mid f \in F\}$ and so $\sup\{X \cup_i S(f) \mid f \in F\}$ is the smallest compactification of X to which F can be extended.

Using above Theorem 2.1 and Corollary 2.3, we obtain the following corollary which is proved by R. E. Chandler and G. D. Faulkner [4].

Corollary 2.4. $\alpha X = \sup\{X \cup_i S(f) \mid f \in S^{\alpha}\}$ if and only if $\{f^{\alpha} \in C^*(\alpha X) \mid f^{\alpha} \text{ is an extension of } f \text{ and } f \in S^{\alpha}\}$ separates points of $\alpha X = X$.

3. Main results

For a completely regular space X, X is called a retractive space if and only if there is a retration of βX onto $\beta X - X$. **Theorem 3.1**[6]. If X is a retractive space, then X is locally compact and pseudocompact.

Lemma 3.2[8]. For a compactification αX of X, αX is a singular compactification if and only if there exists a retraction of αX onto $\alpha X - X$.

Theorem 3.3[4]. If X is non-pseudocomapact, then $\beta X = \sup\{X \cup_i S(f) \mid f \in S^*\}.$

We generalize the theorem of R.E.Chandler: "If X is a retractive space, then $\beta X = \sup \{X \cup_i S(f) \mid f \in S^*\}$." and give some answers on the problem given by J. P. Guglielmi.

Theorem 3.4. If αX is a singular compactification, then αX is equal to $\sup\{X \cup_i S(f) \mid f \in S^*\}$.

Prooof. Suppose that h is a singular map of X to Y where S(h)=Y is compact and $\alpha X=X\cup_h S(h)$. Since the compact space Y is embeddable to the cube, there exists and embedding π of Y to $\prod_{A\in A} I_A$ where and I_A is a closed interval in R. For any $\lambda \in \Lambda$, let $p_A: \prod_{\lambda \in \Lambda} I_A \longrightarrow I_A$ be a projection and let $F=\{p_A \circ \pi \circ h \mid \lambda \in \Lambda\}$. Then, it is obvious that F is a subset of C*(X). Since $\alpha X=X\cup_h S(h)$, there exists unique extension h^{α} of h to αX with $h^{\alpha}(\alpha X)=Y$. Hence, we have that for any $\lambda \in \Lambda$, $p_A \circ \pi \circ h^{\alpha}$ is an extension of $p_A \circ \pi \circ h$ to αX . And so, $p_A \circ \pi \circ h \in C^{\alpha}$. Next, we will show that $p_A \circ \pi \circ h$ is singular. Let $Z=Cl(p_A \circ \pi(Y))$, then Z is compact since it is closed in the compact space I_A . For any compact subset A of X,

$$Z \supseteq Cl(p_{\lambda} \circ \pi \circ h(X - A))$$

= Cl(Cl(p_{\lambda} \circ \pi \circ h(X - A)))

4

$$\supseteq Cl(p_{\lambda} \circ \pi(Cl(h(X-A)))) \text{ since } p_{\lambda} \text{ is continuous}$$
$$= Cl(p_{\lambda} \circ \pi(Y)) \text{ since } h \text{ is singular}$$
$$= Z.$$

Hence, we have that $Z = \bigcap \{ Cl(p_k \circ \pi \circ h(X - A)) \mid A \text{ is compact in } \}$ X}. Therefore, for any $\lambda \in \Lambda$, $p_{\lambda} \circ \pi \circ h$ is singular. Finally, we will show that $\mathbf{F}^{\alpha} = \{ \mathbf{f}^{\alpha} \mid \mathbf{f}^{\alpha} \text{ is an extension of } \mathbf{f} \text{ to } \alpha \mathbf{X}, \mathbf{f} \in \mathbf{F} \}$ separates points of $\alpha X = X$, that is, for any y_1 , $y_2(\neq) \in \alpha X = X$, there exists a $\lambda \in \Lambda$ such that $(p_{\lambda} \circ p \circ h)^{\alpha} (y_1) \neq (p_{\lambda} \circ \pi \circ h)^{\alpha} (y_2)$ where $(p_{\lambda} \circ \pi \circ h_{\alpha})$ is an extension of $p_{\lambda} \circ \pi \circ h$ to αX . In the above progress, we know that $h^{\alpha}(y_1) = y_1$ and $h^{\alpha}(y_2) = y_2$ since y_1 , $y_2 \subset \alpha X - X$ and $\alpha X = X \cup_h S(h)$. Since π is embedding, we have that $\pi(y_1) \neq \pi(y_2)$. Since $p_\lambda \circ \pi \circ h^{\alpha}$ is an extension of $p_k \circ \pi \circ h$ and the extension is unique, $(p_k \circ \pi \circ h)^{\alpha}$ is equal to $p_1 \circ \pi \circ h^\circ$. The fact that $\pi(y_1) \neq \pi(y_2)$ implies that there is a $\lambda \in \Lambda$ such that $p_{\lambda} \circ \pi(y_1) \neq p_{\lambda} \circ \pi(y_2)$, and so $(p_{\lambda} \circ \pi \circ h)^{\alpha} (y_1) p_{\lambda} \circ \pi \circ h^{\alpha}$ $(y_1) = p_{\lambda} \circ \pi(y_1) \neq p_{\lambda} \circ \pi(y_2) = p_{\lambda} \circ \pi \circ h^{\alpha}(y_2) = (p_{\lambda} \circ \pi \circ h)^{\alpha}(y_2)$. Hence, F^{α} separates points of $\alpha X = X$. Therefore, by Corollary 2.4, $\alpha X = \sup \{X \cup S(f)\}$ $f \in F$. But since $F \subseteq S^{\alpha}$, $\alpha X = \sup\{X \cup S(f) \mid f \in F\} < \sup\{X \cup S(f) \mid f \in F\}$ $f \in S^{\circ}$ and so, $\alpha X = \sup\{X \cup_i S(f) \mid f \in S^{\circ} \text{ because of } \sup\{X \cup_i S(f) \mid f \in S^{\circ}\}$ $<\alpha X$ by Corollary 2.3. This completes the proof.

Corollary 3.5. If X is a retractive space, then $\alpha X = \sup\{X \cup S(f) | f \in S^{\alpha}\}$ for any compactification αX of X.

Proof. Let r be a retraction of βX to $\beta X - X$ and let ϕ be the natural projection of βX to αX . Define $r': \alpha X \rightarrow \alpha X - X$ given by $r'=\phi|_{\alpha X}-x\circ r\circ \phi^{-1}$. Then, it is obvious that r is well-defined, ontinuous map with $r'|\alpha x-x=1 \alpha x-x$. Hence, $\alpha X=\sup\{X \cup_i S (f) \mid f \in S^{\alpha}\}$ by Lemma 3.2 and Theorem 3.4. We obtain R. E. Chandler's Theorem as a Corollary.

Corollary 3.6. If X is a retractive space, then the Stone-Cech Compactification βX of X is equal to $\sup\{X \cup S(f) \mid f \in S^*\}$.

In above, we showed that if X is a retractive space, then $\alpha X = \sup \{X \cup_i S(f) \mid f \in S^{\alpha}\}$ for any compactification αX , and this implies that $\beta X = \sup \{X \cup_i S(f) \mid f \in S^*\}$. But, the converses don't hold as you see in examples below. First, we give an example in which $\beta X = \sup \{X \cup_i S(f) \mid f \in S^*\}$, but $\alpha X \neq \sup \{X \cup_i S(f) \mid f \in S^{\alpha}\}$ for some compactification αX of X.

Example 3.7. Let X=R with the usual topology. Since R is non-pseudocompact, $\beta X = \sup\{X \cup_i S(f) \in S^*\}$ by Theorem 3.3. Let αX be the compactification of X with two points remainder. If αX is a singular compactification, then there exists a singular map $f: X \longrightarrow$ $\{a, b\}$. Then, $f(X) = \{a\}$ or $f(X) = \{b\}$ since R is connected and f is continuous. But this contradicts to $Cl(f(X)) = \{a, b\}$. Hence, αX is not a singular compactification. If $\alpha X = \sup\{X \cup_i S(f) \mid f \in S_\alpha\}$, then $X \cup_i S(f) \leq \alpha X$ for any f in S^α , and so, $X \cup_i S(f) \mid f \in S^\alpha\}$ is the one-point compactification, which is a contradiction.

Next, we give an example in which X is not a retractive space, but $\alpha X = \sup\{X \cup_i S(f) \mid f \in S^{\alpha}\}$ for any compactification αX of X.

Lemma 3.8[4]. If $f \in C^{\circ}$, then $f^{\circ}(\alpha X - X) = S(f)$.

Recall that a directed set Λ is a partially ordered set with the following property; for any α , $\beta \in \Lambda$, there is a λ in Λ such that $\alpha < \lambda$ and $\beta < \lambda$.

6

Lemma 3.9[9] Let X be a compact space, Λ a directed set and A_{α} a closed, connected and non-empty subset of X for any $\alpha \in \Lambda$. If $A_{\alpha} \in A_{\beta}$ for α , $\beta \in \Lambda$ with $\beta \leq \alpha$, then $\bigcap_{\alpha \in \Lambda} A^{\alpha}$ is connected.

Example 3.10. Let $X = [0, \infty)$ with the usual topology. Then, X is not a retractive space by Theorem 3.1, since X is not pseudocompact. First, we will show that $\alpha X - X = \bigcap_{n=1}^{\infty} Cl_{\alpha x}(X_n)$ for any compactive tification αX of X where $X_n = [n, \kappa)$. Since $\alpha X = Cl_{\alpha}(X) = Cl_{\alpha}(X_n \cup [0, \kappa)]$ n])=Clax(X_n) \cup [0, n], and [0, n] \subseteq X, we have that $\alpha X = Cl_{\alpha x}(X_n) \cup$ $[0, n] = X \subseteq Cl_{ax}(X_n). \text{ Hence, } \alpha X = X \subseteq \bigcap_{n=1}^{\infty} Cl_{ax}(X_n). \text{ For converse, if } x$ $\in X$, then there exists an open neighborhood U of x in X such that Cl_x(U) is compact since X is locally compact. And there exists an n in N such that $Cl_{x}(U) \subseteq [0, n]$. And so, $x \notin Cl_{ax}(X = Cl_{x}(U))$ and $Cl_{ax}(X-Cl_x(U)) \supseteq Cl_{ax}(X-[0, n])$, this implies that $x \notin Cl_{ax}(X-[0, n])$ n))= $Cl_{\alpha x}(X_n)$. Hence, $\alpha X - X \supseteq Cl_{\alpha x}(X_n) \supseteq \bigcap_{n=1}^{\infty} Cl_{\alpha x}(X_n)$. Since X_n is connected for any n, we have that $\alpha X - X$ is connected for any compactifiaction αX of X by Lemma 3.9. Given compactification αX of X, let p, $q(\neq) \in \alpha X - X$, then there exists a continuous map f from αX to [0, 1] with f(p)=0 and f(q)=1. Since f is continuous and $\alpha X - X$ is connected, $f(\alpha X - X)$ is connected. Because of $f(\alpha - X) \in [0, 1]$, f(p) = 0and f(q)=1, we have that $f(\alpha X - X) = [0, 1]$. Let $g=f|_x$. Since g has an extension f to αX , by Lemma 3.8, $S(g) = f(\alpha X - X) = [0, 1]$. Hence, we have that g is a singular map. And so, g is an element of S^a and $f(p) \neq f(q)$. Therefore, S^a separates points of $\alpha X = X$. By Corollary 2.4, we know that $\alpha X = \sup \{X \cup S(f) \mid f \in S^{\circ}\}$.

References

- BJ.Ball and S.Yokura, Compactifications determined by subsets of C*(X), Topology and its Applications, 15(1983), 1-6.
- G.L.Cain, R.E Chandler and G.D.Faulkner, Singular sets and remainders, Trans. Amer. Math. Soc., 268(1981), 161-171.
- 3. R.E.Chandler, Hausdorff compactifications, Marcel Dekker, Inc., New York, 1976.
- R.E.Chandler and G.D.Faulkner, Singular compactifications i The order structure, Proc. of Amer. Math. Soc., 100(1987)
- R.E.Candler, G.D.Faulkner, J.P.Gughelmi and M.C.Memory, Generalizing the Alexandorff-Urysohn double circumference construction, Proc. Amer. Math. Soc., 83(1981), 606-608
- J.B.Conway, Projections and retractions, Proc. of Amer. Math. Soc., 17(1966). 843-847.
- L.Gillman and M.Jerison, Rings of continuous functions, D.Van Nostrand Co. Princeton, 1960.
- J.P.Guglielmi, Compactifications with wingular remainders, PH.D.Thesis, North Carolina State University, 1986
- 9. S.Willard, General topology, Addison-Wesley, 1970.

Department of Mathematics University of Ulsan