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Generalized Special Linear Group

B.S. Upadhyaya,

1. Introduction

Let K be an algebraically closed h시d of characteristic p > 0 and F 

be a subfield of K. The group SL(n, F) of all n X nunatrices with deter- 

mma가 1, over the field F, is a member of a large, important family of 

groups which arise naturally as covering groups of certain subgroups of 

거isomorphism groups of simple Lie algebras. The structure and represe- 

ntations of these groups largely depend on those of the corresponding 

Lie algebras. The 아andard reference for the study of these groups are 

Bor서 Ll], Steinberg [7], Carter [2] and Humphreys [3丄 Representa- 

tio日s of these groups have been discussed by Humphreys [4], Jeya Ku

mar [5], Srinivasan〔6] and by this author in [8J, [9丄 [1 이 and Ell]. 

In this note we try to see what happens to these groups if we take the 

get of 게｝ nXn matrices over the field F w갈h determinant ± 1, when h = 

2. We restrict ourselves to the structure of 하le group. Representation of 

these groups will be discussed elsewhere.

2. Generalized Special Linear Group

Consider the set of 게 1 nXn matrices over a field F, with determinant 

土 1. Denote this set by GSL(n, F). Clearly GSL(n, F) forms a group un~ 

der matrix multiplication. SL(n, F), the special linear group, of all nXn 

matrices over the field F, with determinant 1 is a subgroup of GSL(n,



224 B.S. Upadhyaya

F). We call GSL(n, F) as the Generalized Special Linear Group of mat

rices of order n over F.

3. Generators for the Generalized Special Linear 
Group GSL(2,F)

Let xa(t) =(* ；), j(t) = (] ；), x心)=(J ；).

X-p(t) = (] Clearly these elements belong to GSL(2, F).

Further Xa(t), x^(t), tg F generate SL(2, F).

Now consider any element (: §) £ GSL(2, F). Then ad—be— ± 1.

If ad—be = +1, then (:扌)£ SL(2, F) and therefore (: ?) 

is generated by Xa(t) and Xy(t), te F. But 

，如)=G 1) = (o -1) (A 4)= MO) x*t)

Therefore j(t) is generated by 知(s), ss F. Therefore g) with 

ad —be = 1 is generated by Xa(t) and x_jj(t), t£ F.

Let ad—be = -1.

Case ( i) Let c 尹 0. Now,

M 11 이 = /1+«2 -tA 
(0 1/ \t2 -1/ — I t2 -1；

Therefore,

(1 t.\ (1 0\ H t3\ = /1+«2
\0 1 丿 \t2 -1} \Q 1丿—I t2

一 /1+tit?
t2

I1) (J 비

ts + t】t2 \
七2坛1 /

Let t2=c and choose ti and t3 such that l+tit2=a
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and t2t3—1 = d. Then
. 1 , / H- tit? ta+tit? — ti Jsince det ( & *1 )

.1) , det(J 

(l+tit2) (t2t3— 1) — t2(t3+tit2—ti) = —1 gives a , d—c(t3+tit2—ti)= 

-1.

Hence b=(后+區一tj (• ad—bc= — 1). Therefore

"Hi 3(投)W) where

ti, t2, t3 are given by

t2 = c

l + tlt2 = 3 (1)

tzts — 1 — d

US비
q

Thu ：扌)=Xa(ti) x^(t2) Xa(t3) where ti, t2, ta are given by (1). Thus 

is generated by xKt), x或t), teF.

Case (ii) Let b 구土 0 Now,

이
 L
0'L
 

1
 

1
 Au-

1
 o
 1
 o

Take t2—b and choose ti and t3 such that 14-t2t3—a, tit2-l=d,

Then, since det (犧汶-1)!區-1)= 一】

(1 + 成3)(tlt2 —1) —ti t[+(t[t2~~ 1)& = —1 

i.e.
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ad —b ti+ (tit2~ l)ts— -1 

and since ad~bc= — 1 it Allows th가 b=b + (tit2 — Dt*

(项弋w w?

= Xe(ti) Xp(t2) J(t3) (2)

But we have already noted that j(t) is generated by x^(s), se F. Also, 

X0(t)= (J -1) = (J -；) (J -1) = x(t) Xf(o).

Hence xp(t) is generated by xjt), 5야(t), tsF. Therefore by (2)

(: d) is generated by Xi(t), 5야(t), te F.

Case(iii) If both b—0 and c=0 then ad—bc= —1 gives a # 0 and d= 

—a1. Therefore

/a b\ _ /a 0 \ _ /0 a\ /0 -1\
(c d/ -(0 -a1/ - \al 0)\1 0/

and by what we have seen in case (i) both the elements on the right 

hand side and therefore (: 扌)are generated by Xa(t) and 2Cg(t), t £ F.

Thus to sum up we have ,

Theorem : GSL(2, F) is generated by Xa(t) = J

and x^(t) = (： 3, " F.

Recall that SL(2, F) is 시so generated by x«(t) = (/ ；), t 8 F and

3 = (% *). Similar to this result, we have for GSL(2, F).

Theorem : GSL(2, F) is generated by Xa(t) = (g ；)，饪F and 

仔=(? o)

Proof : By the previous theorem, GSL(2, F) is generated by
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But,

1
 o

o
 1

1
 o

1
 o

Therefore

X^(t)=Xa(l)G)1 Xa(—1) gJ Xa(l —t) W

Therefore GSL(2, F) is generated by Xa(t), ts F and Hence the 

theorem.

4. Order of the generalized special linear group

When F is the finite field Fq, q=pn of finite characteristic p > Q , 

GSL(2, Fq) is a finite group. Now we find its order. Recall that SL(2, 

Fq) is of order q(q2~ 1). This can be proved as follows. If (: 談 is 

any element in SL(2, Fq), then a can take any of the q values in Ca옹e

(i) When a takes q—1 nonzero values in Fq, b can take any of the q 

values and c can take any of the q values. But once a, b, c are fixed, 

since ad — bc=l, d is fixed and therefore can take only one value. Thus 
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we have(q—1) q • q • l=(q—l)q2 choices for a, b, c, d in this case.

Case(ii) When a takes the value 0, b can take o이y q—1 nonzero va

lues since if b is also 0 then ad—bc=0 which is not possible. But then, 

since ad—bc=l, —bc=l and therefore c=—b-'ie, for a given choice 

of b, c is fixed. But d can take any of the q values. So we have in all 

1 • (q~1) • q , l=(q—l)q choices for a, b, c, d in this case.

Thus in all there are

(q—1)妒+(q—l)q = (q-1) (q2+q)

=(q~1) (q+l)q

=(q2-l)q

Choices for a, b, c, d. Therefore the order of SL(2, Fq) is q(q2 —1).

But in case of GSL(2, Fq) in case(i), once a, b, c are fixed, for each 

choice of a, b, c the element of has two values since ad—bc= + L

Therefore there are 2(q—l)q2 choices m all for a, b, c, d. In case(ii) 

again, when a=0, b can take any of the (q— 1) nonzero values. Then 

c can take only two values namely ± bf But d can take any of the q 

values. So we have again 2(q—l)q choices for a, b, c, d. Thus in all 

there are

2(q—l)q2+2(q—1) q=2(q—1) (q2+q)

= 2(q-l) (q+l)q

=2(q2-l)q
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elements in GSL（2, Fq）. Thus we have proved.

Theorem : 0（GSL（2, Fq）） = 2（q2—l）q.
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