THE COMPLETE RELATIONS OF TYPES FOR A HIGHER ORDER TYPE-THEORETIC LANGUAGE

Hyang Il Yi

1. Introduction

The Language Lr under consideration is called "type-theoretuc" because its syntax is based on Russell's smple theory of types, probably most closely resembling the version of type theory in Church(1940). L_{T} will contain both constants and varables in syntax, and it will allow quantification over variabes of any category.

We recall the concept of L_{r} recursively.
(1) e is a type.
(2) t is a type
(3) If a and b are any types, then $\langle a, b\rangle$ is a type.
(4) Nothing else is a type.

In other words,
e is a term, t is a formulas, 〈e,t〉 is a one-place predicates and $\langle e,\langle e$, t) $)$ is a two-place predicates.

2. Type model D of a higher-order type language

Let's construct a type model D of a higher-order type theoretic language L_{T}. Let E be a singleton of type e . Starting from $\mathrm{D}_{\mathrm{o}}=\{\mathrm{t}\}$ a chain
of approximations of a type model D is built by defining

$$
D_{n+1}=E+\left\langle D_{n}, D_{n}\right\rangle
$$

where + represents disjoint sum and $\left\langle D_{n}, D_{0}\right\rangle$ is the space of all continuous mappings from D_{n} to D_{n}, and embedding each D_{n} in D_{n+i} by a suitable projection pair (i_{n}, P_{n}) of D_{n} on D_{n+1} where $i_{n}: D_{n} \rightarrow D_{n+1}$, $P_{n}: D_{n+1} \rightarrow D_{n}$ with the propertres $P_{n} \circ I_{n}=i d_{D_{m}, l_{n}} \circ P_{n} C i d_{D_{n}+1}$. If $d \varepsilon D_{n}$, we identify d with $i_{n x}(d) \varepsilon D$.
There we can assume

$$
\mathrm{D}_{0} \subseteq \mathrm{D}_{1} \subseteq \cdots \subseteq \mathrm{D}_{\mathrm{n}} \subseteq \cdots \subseteq \mathrm{D} .
$$

Let d_{n} stand for $i_{n \infty} \circ P_{x n}(d)$. It holds

$$
\mathbf{d}_{n}=i_{n s \infty} \circ P_{s n n}(d) \subseteq d .
$$

Also if deD a_{a} then $\mathrm{d}_{\mathrm{a}}=\mathrm{d}$. Now we may take the type model D of L_{τ} into account of the equational form

$$
\mathrm{D}=\mathrm{E}+\langle\mathrm{D}, \mathrm{D}\rangle .
$$

Defining a partial ordering \leq on D_{n} by $d \leq f$ if and only if $d(a) \leq f(a)$ for all $a \varepsilon D_{n}$ the set of all continuous functions from D_{n} to D_{n} is a complete partial ordered set and the disjoint sum of $\mathrm{E}+\left\langle\mathrm{D}_{\mathrm{n}}, \mathrm{D}_{\mathrm{n}}\right\rangle$ is a complete one, too.

3. Complete relations on the model D

Definition 2.1

(1) A binary relation $\mathrm{R} \subseteq \mathrm{D} \times \mathrm{D}$ is ω-complete if and only if $\left(U\left\langle d^{(1)}\right\rangle_{\text {luw }}, U\left\langle f^{(1)}\right\rangle_{t \omega}\right\rangle \varepsilon R$ whenever for all i $\varepsilon \omega,\left(d^{(6)}, f^{(6)}\right\rangle \& R$ where $\left\langle d^{(i)}\right\rangle_{\text {seou, }}\left\langle f^{(1)}\right\rangle_{\text {Iow }}$ are increasing chains in D.
(2) $R \subseteq D \times D$ is complete if and only if R is ω-complete and $(t, t) \varepsilon R$.

Proposition 2.1 The following properties of D hold:
(1) $\mathrm{d}_{0}=\mathrm{t}$.
(2) If $a \in E$, then for all $n \geq 1 a=a_{n}$.
(3) If $\mathrm{d} \varepsilon \mathrm{D},\left\langle\mathrm{d}_{\mathrm{n}}\right\rangle_{\text {muw }}$ is an increasing chain in D and $\mathrm{d}=\mathrm{U}\left\langle\mathrm{d}_{n}\right\rangle_{\text {now }}$.
(4) If $\mathrm{fe}\langle\mathrm{D}, \mathrm{D}\rangle$, then $\mathrm{f}_{\mathrm{n}+3}(\mathrm{~d})=\mathrm{f}_{\mathrm{n}+3}\left(\mathrm{~d}_{n}\right) \varepsilon \mathrm{D}_{n}$.
(5) If $f \varepsilon\langle D, D\rangle$, then $\left(f\left(d_{n}\right)\right)_{n}=f_{n+1}\left(d_{n}\right)$.

Let $K=\left\{k_{1}, k_{2}, \cdots, k_{m}\right\}$ be a set of basic predetermined types of D and Φ a set of type variables. The set T of types is defined by:
(1) $\mathrm{K}, \boldsymbol{\Phi} \subseteq \mathrm{T}$.
(2) If $\alpha, \beta \varepsilon T$ then $\beta(\alpha)_{\varepsilon} T$
(3) If $\alpha, \beta \varepsilon \mathrm{T}$ then $7 \alpha \varepsilon \mathrm{~T}, \alpha \wedge \beta \varepsilon \mathrm{~T}, \alpha \vee \beta \varepsilon \mathrm{~T}$,

$$
\alpha \rightarrow \beta \varepsilon \mathrm{T} \text { and } \alpha \leftarrow \beta \varepsilon \mathrm{T} .
$$

Now we define a relation $\mathrm{R}(\alpha) \subseteq \mathrm{D} \times \mathrm{D}$ for each term α of the set To of closed types. We set the α in the form

$$
\alpha=Q_{i} \zeta_{1} \cdots \cdots Q_{n} \zeta_{n} \alpha^{\prime}
$$

where α^{\prime} is etther a basic type K or a type of the logical forms. Let us define the scope size $l(\alpha)=n$.
(i) $l(3 \zeta \alpha)>l(\alpha[3 \zeta \alpha / \zeta])$
(ii) $l(\forall \zeta \alpha)>l(\alpha[\gamma / \zeta])$ for all types γ.
$\mathrm{R}(\alpha)$ is bult by successive approximations in the following way.

Defintion 2.2 Let $\mathrm{K}_{1}, \cdots, \mathrm{~K}_{n}$ be complete relations over D.
(1) $R(\alpha)_{n} \subseteq D_{\mathrm{n}} \times \mathrm{D}_{\mathrm{n}}\left(\alpha \varepsilon \mathrm{T}^{\circ}, \mathrm{n}>0 \mid\right.$ is defined by:
(a) $R(\alpha)_{o}=\{(t, t)\}$ for all $\alpha \varepsilon T^{2}$.
(b) $R(K)_{n+1}=K$.
(c) $\left(d_{1}, d_{2}\right) \varepsilon R(\beta(\alpha))_{n+1} \mapsto d_{1} \varepsilon\langle D, D\rangle_{n+1}$ or $d_{1}=t(i=1,2)$ and for all $\left(f_{1}, f_{2}\right) \varepsilon R(\alpha)_{n},\left(d_{1}\left(f_{1}\right), d_{2}\left(f_{2}\right)\right)_{\varepsilon R}(\beta(\alpha))_{n-1}($ if $\mathrm{d}_{\mathrm{l}}=\mathrm{t}$, then $\left.\mathrm{d}_{\mathrm{i}}\left(\mathrm{f}_{\mathrm{l}}\right)=\mathrm{t}\right)$.
(d) $\left.\left(d_{1}, \mathrm{~d}_{2}\right) \in \mathrm{R}(\neg \alpha)_{n+1} \mapsto \mathrm{~d}_{\varepsilon}<\mathrm{d}, \mathrm{D}\right\rangle_{\mathrm{n}+1}$ or $\mathrm{d}_{1}=\mathrm{t}(\mathrm{i}=1,2)$ and for all $($ $\left.\mathrm{f}_{1}, \mathrm{f}_{2}\right) \varepsilon \mathrm{R}(\neg \alpha)_{\mathrm{n}},\left(\mathrm{d}_{1}\left(\mathrm{f}_{1}\right)_{, ~ d_{2}}\left(\mathrm{f}_{2}\right)\right)_{\ell} \mathrm{R}(\alpha)_{\mathrm{n}}$.
(e) $\left(d_{1}, d_{2}\right) \varepsilon R(\alpha \wedge \beta)_{n+1} \mapsto\left(d_{1}, d_{2}\right)_{\varepsilon} R(\alpha)_{n+1}$ and $\left(d_{1}, d_{2}\right) \in R(\beta)_{n+1}$.
(f) $\left(d_{1}, d_{2}\right) \varepsilon R(\alpha \vee \beta)_{n+1} \mapsto\left(d_{1}, d_{2}\right) \varepsilon R(\alpha)_{n+1}$ or $\left(d_{1}, d_{2}\right) \varepsilon R(\beta)_{n+1}$.
(g) $\left.\left(d_{1}, d_{2}\right) \varepsilon R(\alpha \rightarrow \beta)_{n_{1} \uparrow \rightarrow} \rightarrow d_{\varepsilon} \varepsilon D, D\right\rangle_{n+1}$ or $d_{1}=t(i=1,2)$ and for all $\left(f_{1}, f_{2}\right)_{\varepsilon R}(\alpha)_{n},\left(d_{1}\left(f_{1}\right), d_{2}\left(f_{2}\right)\right)_{\varepsilon R}(\beta)_{n}$.
(h) $\left(d_{1}, d_{2}\right) \in R(\alpha \leftarrow \beta)_{n+1} \mapsto\left(d_{2}, d_{2}\right) \in R(\alpha \rightarrow \beta)_{o+1}$ and $\left(d_{1}, d_{2}\right) \in R(\beta \rightarrow \alpha)_{n+1}$.
(i) $\left(d_{1}, d_{2}\right) \varepsilon R(\forall \zeta \alpha)_{n+1} \mapsto$ for all $\gamma \varepsilon T^{\circ}$, $\left(d_{1}, d_{2}\right) \varepsilon R(\alpha[\gamma / \zeta])_{a+1}$.

(2) $(d, f) \in R(\alpha)$ คfor all $n,\left(d_{n}, f_{n}\right) \in R(\alpha)_{n}$.

Now the following results can be obtained from the definition 2.2 .
Theorem 2.1. It holds the following:
(1) $R(\alpha)_{n} \subseteq R(\alpha)_{n+1}$.
(2) $\operatorname{If}(d, f) \subseteq R(\alpha)_{n+1}$, then $\left(d_{0}, f_{n}\right) \varepsilon R(\alpha)_{n}$.
(3) $\mathrm{R}(\alpha) \mathrm{n}_{\mathrm{n}} \subseteq \mathrm{R}(\alpha)$.

Proof. The third assertion is an immediate consequence of (1) and (2). Let's use the simultaneous induction on $l(\alpha)$. For $\mathbf{n}=0$ the proof is trivial. If α is the one of basic types, i.e., $l(\alpha)=0$ then (1) follows by definition 2.2 (1) $\sim(b)$ and (2) follows by proposition 2.1,(2).

Let us consider the case of formulations. Let $\gamma=\beta(\alpha)(l(\gamma)=0)$.
(1) Let $(d, f) \varepsilon R(\beta(\alpha))_{n}$ and take $(\mathrm{a}, \mathrm{b}) \varepsilon R(\alpha)_{n}$.

We have $\mathrm{d}(\mathrm{a})=\mathrm{d}\left(\mathrm{a}_{\mathrm{o}-1}\right), \mathrm{f}(\mathrm{b})=\mathrm{f}\left(\mathrm{b}_{\mathrm{n}-1}\right)$ by proposition 2.1,(4). $\operatorname{By}(2)$
We have ($\left.a_{n}, \frac{1}{}, b_{n-1}\right) \in R(\alpha)_{n-1}$ and therefore by (1) $(d(a), f(b))_{\varepsilon} R(\beta(\alpha))_{n-2} \subseteq R(\beta(\alpha))_{n-1}$.
Hence $(d, f) \varepsilon R(\beta(\alpha))_{n+1}$.
(2) Let $(d, f) \in R(\beta(\alpha))_{n-1}$. Take (a, b) $\in R(\alpha)_{n-1} \subseteq R(\alpha)_{n}$ by (1). Hence
we have $(d(a), f(b))_{\varepsilon} R(\beta(\alpha))_{n}$ - 2 .
And by (2), ($\left.(d(a))_{n-1},(f(b))_{n-1}\right) \in R(\beta(\alpha))_{n \cdot 2} \subseteq R(\beta(\alpha))_{n-1}$.
Now by proposition 2.1 (5), it holds

$$
\begin{aligned}
& d_{n}(a)=(d(a))_{n-1}, f_{n}(b)=(f(b))_{n-1} . \\
& \text { Hence }\left(d_{m} f_{n}\right) \varepsilon R(\beta(\alpha))_{n} .
\end{aligned}
$$

In the case of disjunction and conjunction, (1) and (2) follow by the defintion 2.2 (1) $\sim(\mathrm{e})$, (f$)$. The proof of cases $\neg \alpha, \alpha \rightarrow \beta$ and $\alpha \mapsto \beta$ is similarly to the case of formulation $\beta(\alpha)$. Finally the cases of quantification is proved by induction on $l(\alpha)$ and the properties of scope size since
$(\mathrm{d}, \mathrm{f}) \in \mathrm{R}(\forall \zeta \alpha)_{n}$ if and only if $\forall \gamma \varepsilon \mathrm{T}^{0}$, $(\mathrm{d}, \mathrm{f}) \varepsilon \mathrm{R}(\alpha[\gamma / \zeta])_{n}$. and
$(\mathrm{d}, \mathrm{f}) \varepsilon R(3 \zeta \alpha))_{\mathrm{n}}$ if and only if $(\mathrm{d}, \mathrm{f}) \varepsilon R(\alpha[3 \zeta \alpha / \zeta])_{\mathrm{n}}$.

REFERENCES

1. Anderews P., An Introducton to Mathematical Logic and Type Theory to Truth Through proof, Academic press, 1986
2. Barwise J. et al., Topoi, The categoncal Analysis of ? ~ic, SLFM Vol. 98., NorthHolland, 1984.
3. Coppo M, A completeness Theorem for Recursivety Defined Types, Proc. of ICALP '85, Lecture Notes in Computer Science 194, Spinger-Veriag, 120~130, 1985
4 Coppo M., Zacchi M, Type Inference and Logical Relations, Proc. of Symposium on Logic computer Sceence, Cambridge, massachusetts, 218~226, 1986.
4. Lambek J. From Types to Sets, Advances in Math. 36, 113~64, 1980
5. Milner R, A Theory of Type Polymorphism in Progranmang, I Comp. System Sat. 17. 348~375, 1978.
6. Reynolds J., On the Relations Between Direct and Continuation Semantics, Proc.
of ICALP 74, Lecture Notes in computer Science 14, 141~156, 1974.
7. Scott D., Domans for Denotational Semantics, Proc. of ICALP 82, Lecture Notes in Computer Scrence 140, Springer-Verlag, 577~613, 1982.

Department of Applied Mathematics
National Fisheries Unıversity of Pusan
Pusan 608-737
Korea

