PROPERTIES OF POSITIVE DERIVATIONS ON ORDERED STRONGLY REGULAR NEAR-RINGS

Yong-Uk Cho

1. Introduction

G. Pilz(10) in 1972 has defined the concept of ordered near-ring and then studied direct sums of ordered near-rings.

A near-ring N is called (partially) ordered if its additive group is (partially) ordered, so that, we can speak of positive elements in the sense that an element a of the additive group of N is called positive if $a \ge 0$, and negative if $a \le 0$, and if, in addition, the product of positive elements is positive, i.e., if it follows from $a \ge 0$, $b \ge 0$ that $ab \ge 0$. If a > 0, b > 0 implies ab > 0 then we call N strictly ordered. Examples of strictly ordered near rings are the polynomial near-rings of all $\sum_{i=1}^{n} a_i x^i (a_n \ne 0)$ with addition and substitution of polynomials and coefficient from an ordered ring. $\sum_{i=1}^{n} a_i x^i$ is then defined to be greater than 0 if a_n is greater than 0. Ordered near-ring N is called linear if its additive group is linearly ordered.

It follows from this definition that the trivial (partial) ordering of the additive group of an arbitrary near-ring is a trivial (partial) ordering of the near-ring itself.

DJ.Hansen (3), in 1984, studied positive derivations on ordered strongly regular rings, in this paper, we will be show that an ordered near-

ring(N, +, ·, \leq) which is strongly regular and has the additional property that $a^2 \geq 0$ for each $a \in N$ can not have nontrivial positive derivations.

An ordered near-ring which is also integral, is called an ordered integal near-ring and which is also a near-field is called an ordered nearfield.

In an ordered near-ring, $P = P(N) = \{a \in N \mid a \ge o\}$ is called the positive cone of N. Every partial ordering of a near-ring N is determined by $P : a \le b$ if and only if $b - a \in P$.

Near-ring N is called strongly regular if for any $a \in N$ there exists an element x in N such that $a = xa^2$.

We will investigate some properties of ordered near-rings (§2) and positive derivations on it(§3).

2. Some properties of ordered near-rings

Remark 2.1. The condition on the product of positive elements in our definition is obviously equivalent to the fact that if $a \le b$ and $c \ge o$, then $ac \le bc$. Now clearly, it follows form $a \ge o$ that $-a \le o$. We only have to add -a to both sides of the first inequality; conversely, it follows from $a \le o$ that $-a \ge o$. Hence we have the following inequalities:

if $a \le o$, $b \ge o$, then $ab \le o$ and $b(-a) \ge o$.

if $a \ge 0$, $b \le 0$, then $ba \le 0$ and $a(-b) \ge 0$.

if $a \le 0$, $b \le 0$, then $a(-b) \le 0$ and $b(-a) \le 0$.

From the definition of an ordered near-rings we derive the following equivalent concept.

Lemma 2.2. Let N be a near-ring. If $N = (N, +, \cdot, \le)$ is an ordered near-ring with positive cone P, then P has the following proper-

ties:

- (1) P is a subseminear-ring of N
- (2) If $a \in P$ and $-a \in P$, then a = o
- (3) P is an additive normal subset of N, that is, P + a = a + P for all aεN.

Conversely, suppose N has a subset P satisfying these conditions. If we define $a \le b$ to mean that $b - a\varepsilon P$, then N becomes an ordered near-ring with positive cone P.

Proof. suppose, first, that N is an ordered near-ring with positive cone P. Let a,beP. Then $a \ge 0$, $b \ge 0$ implies $a + b \ge 0$ and $ab \ge 0$, that is, P is a subseminear-ring of N. If aeP and -aeP then $a \ge 0$ and $-a \ge 0$, i.e., $a \ge 0$ and $a \le 0$ by symmetry property of partial ordering, a = 0. Finally, Let aeN and xeP, then from $x \ge 0$, $-a + x + a \ge 0$, and $a + x - a \ge 0$. This yields part(3)

Conversely, suppose that a subset P of N has the properties $(1) \sim (3)$, and define $a \le b$ to mean that $b = a\epsilon P$. So that, by (3), we also have

$$-a + b = -a + (b - a) + a\varepsilon P.$$

this is a partial ordering of N:

$$a \le a$$
, because, by (1), $a - a = o\varepsilon P$.

If $a \le b$ and $b \le a$, i.e., $b - a\epsilon P$ and $a - b = -(b - a)\epsilon P$ then by (2) b - a = 0, i.e., a = b.

If $a \le b$ and $b \le c$, i.e., $b - a\epsilon P$ and $c - a\epsilon P$, then

$$c - a = (c - b) + (b - a)\epsilon P$$
, i.e., $a \le c$.

Next, if $a \le b$, i.e., $b - a\epsilon P$ then $(b + x) - (a + x)\epsilon P$, that is, $a + x \le b + x$ and by (3), $(x + b) - (x + a) = (x + b) - a - x = x + (b - a) - x\epsilon P$ for all $x\epsilon N$, i.e., $x + a \le x + b$.

Finally, if $a \ge o$, $b \ge o$, i.e., $a\epsilon P$, $b\epsilon P$ by (1), $ab \ \epsilon \ P$, i.e., $ab \ge o$.

We will show a weaker condition of ordered near-ring as following: A near-ring N is said to be a right-ordered near-ring if a partial ordering

is given for its elements such that it follows from $a \le b$ that $a + x \le b + x$ for all $x \in \mathbb{N}$ and if $a \ge 0$, $b \ge 0$, implies $ab \ge 0$. Again, the positive cone $P = \{x \in \mathbb{N} \mid x \ge 0\}$ defines the ordering. For example of right orderability, a positive cone of an ordered near-ring is right ordered, because for any near-ring, only right distributive laws hold.

Proposition 2.3. Let N be a near-ring. If N is a right ordered near-ring with positive cone P, then P has the following properties:

- (1) P is subseminear-ring of N
- (2) If $a \in P$ and $-a \in P$ then a = o.

Conversely, suppose N has a subset satisfying these conditions. If we define $a \le b$ to mean that $b - a \in P$, then N becomes a right ordered nearring with positive cone P.

Proof. This is, of course, similar to the result of Lemma 2.2, and we merely indicate the difference here. If $a,b \in P$ then $a \ge 0$, $b \ge 0$ implies that $a + b \ge 0 + b = b \ge 0$ so that $a + b \in P$, $ab \ge 0$ by definition of right orderability, i.e., $ab \in P$. This yields (1), (2) follows from Lemma 2.2. Conversely, if P satisfies (1) and (2), as in the proof of Lemma 2.2, \le is a partial ordering on N, and product of any two positive elements is positive. Finally, if $a \le b$ and $x \in N$, then $b - a \in P$ so that $(b + x) - (a + x) = b + x - x - a = b - a \in P$ Therefore $a + x \le b + x$

Let us consider the extension properies of this near-rings.

Proposition 2.4. Let I be an ideal of a near-ring N. If I and N/I are both right ordered near-rings then so is N.

Proof. Let $\pi: N \rightarrow N/I$ be the natural near-ring homomorphism. Now we are given P(I) and P(N/I), and we define P(N) by

$$P(N) = \{x \in N \mid \pi(x) \in P(N/I) \text{ or } x \in P(I)\}$$

Then P(N) is subsemmear-ring of N and if $a\epsilon P(N)$ and $-a\epsilon P(N)$ then a = 0, thus by proposition 2.3. N is a right ordered near-ring.

Proposition 2.5. An ordering of a near-ring N determined by a subset P of N with the properties $(1)\sim(3)$ of Lemma 2.2. is linear if and only if the following additional condition holds:

(4) For every asN, either asP or -asP.

Proof. It suffices to show that the linear property of ordered near-ring is equivalent to the condition (4) by Lemma 2.2.

If N is linearly ordered and the element a is not positive, then a < 0 so that $1 < a^{-1}$, that is, a^{-1} is positive.

Suppose, conversely, a subset P of N satisfies the condition $(1)\sim(4)$ and that a, beN If b-aP we are done. But if b-aP then by (4), -(b-a)=a-beP, i.e., $b \le a$.

Proposition 2.6. In any linearly ordered near-field N, all squares of non-zero elements are positive.

Proof. Suppose that $a(\neq 0)\epsilon N$ by proposition 2.5,(4) either $a\epsilon P$ or -a ϵP . Since P is closed under multiplication, $a^2 = (-a)^2 \epsilon P$ in either case, as asserted.

It is a corollary that the identity $1 = 1^2 \epsilon N$ is always positive, while -1 is never positive.

Theorem 2.7. Any lineredly ordered near-field N is an integral near-ring of characteristic o.

Proof. First, suppose that $a\neq 0$, $b\neq 0$ were zero divisors, with ab=0. Then $(\pm a)(\pm b)=0$, but, by the linearity of proposition 2.5, one of $\pm a$ and one of $\pm b$ is in P, hence some one of the four products $(\pm a)(\pm b)$

is in P, say $a\epsilon P$, $-b\epsilon P$ then a(-b) = -ab>0, a contradiction to ab = 0. Hence N is integral.

Second, since 1 ϵ P, it follows by repeated application of part (1) of Lemma 2.2 that 1, 1 + 1, 1 + 1 + 1, \cdots are different positive elements of N, and hence can not be o. Therefore the characteristic of N is o.

3. Positive derivations on ordered strongly regular near-rings

Now, We will introduce a positive derivation on ordered near-rings and investigate that an ordered near-ring which is strongly regular and has the additional property that $a \ge 0$ for each asN can not have nontrivial positive derivations.

Definition 3.1. The statement that δ is a positive derivation on an ordered near-ring N mean that δ is a map from N into N such that:

- (1) $\delta(a + b) = \delta(a) + \delta(b)$ for each a,b\(\epsilon\)N
- (2) $\delta(ab) = \delta(a)b + a\delta(b)$ for each a,beN
- (3) $\delta(a) \ge 0$ for each asN, with $a \ge 0$.

Lemma 3.2. Let N be a strongly regular near-ring. If for any a,b in N with ab = o, then $(ba)^n = bo$, for all positive integer n.

Lemma 3.3. For any strongly regular near-ring N, if a, b in N with ab = o and $a^n = ao$, for any positive integer n>1, then a = o. In this case, in N is zero-symmetric, then N is reduced.

Proof. Assume the conditions hold. Then $a = xa^2 = aa = x^{n-1}a^n = x^{n-1}ao$ for some $x \in N$ so that $ao = a^n = aa^{n-1} = x^{n-1}ao = a$. Thus we have a = ao = aob = ab = o.

Corollary 3.4.(G.Mason(6)). Let N be a zero-symmetric near-ring. If for any a,b in N with ab = 0, then ba = 0 and N is reduced.

Lemma 3.5. Every strongly regular near-ring is regular Moreover if N is strongly regular such that for a_ix in N, $a = xa^2$, then ax = xa.

Proof. Let N be strongly regular. Then for any $a \in N$, $a = xa^2$ for some x in N, so that (a - axa)a = 0, by Lemma 3.2, a(a - axa) = a0. It follows that $(a - axa)^2 = a0 - axa0 = (a - axa)0$ by Lemma 3.3, a = axa. Hence N is regular.

Next, since $(ax - xa)^2 = axo - xao = (ax - xa)o$. Therefore ax = xa. Before proving the main theorem, we will prove the following, here after we may assume that N is zero-symmetric.

Theorem 3.6. Let $(N, +, \cdot, \le)$ be on ordered strongly regular near-ring such that $a^2 \ge 0$ for each as N. If δ is a positive derivation defined on N and as N, with $a \ge 0$, then $\delta(a) = 0$.

Proof. Suppose N is ordered strongly regular and a is any element of N with $a \ge 0$, then there exists an element x in N such that $a = xa^2$. By Lemma 3.5, we have ax = xa and a = axa. Applying δ for a = axa, $\delta(a) = \delta(axa) = \delta(a)xa + a\delta(xa)$. Multiplying on the right side of this equation by a, $\delta(a)a = \delta(a)xa^2 + a\delta(xa)a$. This implies that $a\delta(xa)a = 0$. Hence $(a\delta(xa))^2 = a\delta(xa)a\delta(xa) = 0$. By Lemma 3.3, N is reduced, so that $a\delta(xa) = 0$. It follows that $\delta(a) = \delta(a)xa$.

Next, Since ax = xa, $\delta(xa) = \delta(ax) = \delta(a)x + a\delta(x)$. Multiplying on the right side by a, $\delta(xa)a = \delta(a)xa + a\delta(x)a$. Obviously, $\delta(xa)a = o$ by using Lemma 3.3, and the equality $a\delta(xa)a = o$. Thus, $\delta(a)xa = -a\delta(x)a$, that is, $\delta(a) = -a\delta(x)a$. Since N is ordered, $x^2a \ge o$, and since δ is positive, $\delta(x^2a) \ge o$, namely, $\delta(x)xa + x\delta(xa) \ge o$. Multiplying on the right

by $a(a \ge 0)$, we obtained that $\delta(x)xa^2 + x\delta(xa)a = \delta(x)a + o = \delta(x)a \ge o$. Since, $a \ge 0$, $a\delta(a) = -\delta(a) \ge 0$, by Remark 2.1, $\delta(a) \le 0$. Therefore $\delta(a) = o$.

Theorem 3.7. Let $(N, +, \cdot, \le)$ be an ordered strongly regular near-ring such that $a^2 \ge 0$ for each as N, then $\delta(a) = 0$, for each as N.

Proof. Left to the reader, using Theorem 3.6.

Corollary 3.8. If $(F, +, \cdot, \leq)$ is a strongly regular ordered near-field and δ is a positive derivation defined on F, then $\delta(x) = 0$, for any $x \in F$.

Proof. It is straight-for-ward from proposition 2.6.

REFERENCES

- J.Bergen, Derivations in prime rings, Canada. Math. Bull. Vol. 26(3), (1983) 267~ 270.
- D.Z.Dokovic, On some inner derivations of free Lie algebra over commutative rings, J. of Algebra 119(1988), 233~245.
- D.J.Hansen, Positive derivation on partially ordered strongly regular rings, J.Austral Math. Soc. (series A) 37(1984), 178~180.
- L. Li and B. M. Schein, Strongly regular rings, Semigroup Forum, Vol. 32(1985) 145~161.
- S.Maclane and G.Birkhoff, Algebra 2-nd edition, Macmillan publishing Co. New York, (1979).
- 6. G.Mason, Strongly regular near-rings, Proc. Edin. Math. Soc 23(1980), 27~36.
- 7. M Ohori, On strongly π-regular rings and periodic rings, Math. J. Okayama Univ.

27(1985), 49~52

- 8 D.S.Passman, The algebraic structure of group rings, A wiley-interscience publication, New York, London, Sydney, Toronto.
- G. Pilz, Near-rings, North-Holland Pub Company, Amsterdam, New York, Oxford, (1983)
- 10 G. Pilz, Direct sums of ordered near-rings, J. of Algebra, 18(1971), 340~342.
- 11. R.J.Roth, The structure of near-rings, Doctoral Dissertation, Duke Univ. (1962).

Department of Mathematics Pusan Women's University Pusan 607~082 Korea