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Optimality and Duality for Vector 
Optimization Problems
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1. Introduction

MA Hanson [3] defined the invex function which is a generalization 
of the convex function, proved that the Kuhn-Tucker conditions are suf
ficient for a solution of the scalar optimization problem concerning invex 
functions and established Wolfe [10] duality theorems for this problem. 
R.N. Kaul and S. Kaur [5] established optimality criteria in the scalar 
optimization problem inv이vin흥 pseudo-invex functions and guasi-invex 
functions. Very recently, R.R. Egudo [2] showed that Wolfe type duality 
theorems hold for the vector optimization problem which consists of p- 
convex functions which defined by J.P. Vial [81 D.S. Kim and G.M. Lee 
[6] established that Wolfe type duality theorems hold for the vector op
timization problem which consists of invex functions.

In this paper, we prove that the Kuhn-Tucker optimality conditions are 
su任icient for an efficient s이ution of the vector optimization problem 
which consists of pseudoinvex functions and establish Wolfe type duality 
theorems for this problem.

2. Definitions
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Throughout thi옹 paper, we use the following conventions ； Let Rp be 
a p-dimensionl Euclidean space, x=(x】,…,x^eRp, and

y=(yi,…,yQ性 Rp.

1. x y if and only if x W y" i=L…,P.
2. x y if and only if x W y and x y.
3. x ¥ y is the negation of x y.

Definition 2.1. A differentiable function h : Rn^R is pseudo-invex
with respect to n if and only if there exists a vector valued function tj 
defined on Rn X Rn such that for all x, usRn

Vh(u)n(x, u) 그 0 implies h(x)M h(u).

Definition 2.2. A differentiable function h : R"tR is quasi-invex with 
respect to n if and o끼y if there exists a vector valued function q defined 
on RnXRn such that for all x, usRn,

h(x)Wh(u) implies Vh(u)u(x,u)W 0

We consider the vector optimization problem ；

(P) Miminize f(x)
subject to xcX={x£Rn : g(x) 冬 아,

where f : Rn->RP and g : Rn-^Rra are differentiable functions.
In relation to (P), we consider the following vector optimization prob

lem.
The Wolfe vector dual of (P) [10]；

(D) Maximize f(x) + ytg(x)e
subject to(x, 人,y)£Y= {(x,X,y) : VXtf(x) + Vytg(x) 드 o, yM 0, 心;}, 

where e=(l,…,1)HRp and A* = {】毛Rp： r>0, F은=1}.
Optimization in (P) and (D) means obtaining efficient solutions for 

the corresponding problems. T. Weir [9] first considered the above dual 
problems of (P).
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Definition 1.3. 1. A point x eX is an efficient solution for (P) if and 
only if for any xeX, f(x)^f(x).

2. A point eY is an efficient solution for (D) if and only if
for apy(x, X, y)eY,

f(x) +亍 gCx) e%f(x) +y* g(x)e.

3. Optimality Conditions

Now, we consider optimality conditions for an efficient solution for 
(P).

1集픈^度由 3丄 Supple tfcft liefe-exist 汶 > 0, 及묘； yi函 such that
(1) AK+yLgi is pseudo-invex w.r.t.
(2) for all xeX, [VXf(x)+VytIg(x)]T](x, x)^ 0,
(3) g(x) W 0,
where I={i ： g(x)—0}.

Then, x is an efficient solution for (P).

Proof. Suppose that x is not an efficient solution for (P). Then there 
exists x* £ Rn such that

f(x*)—f(x)< 0 and g(x*)W 0.

Hence we have

f(x*)~f(x)< 0 and gi(x*)—gi(x)^ 0.

Thus, we have

Atf(x*)+ytIg[(x*)〈入吁位)+yLg[&).

By the definition of pseudo-invexity, we have

[VXtf(x)+VytIgI(x)J n (x*, x) < 0,
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which contradicts the assumption (2).

Lemma 3.1 El], x is an efficient solution for (P) if and only if x 
is a solution for the following scalar optimization problems ；

(R) Minimize £(x)
subject to f(x)W fjCx) for all j归，g(x)W 0,

for each i=l/-,p.
From Lemma 3.1, we can prove the following theorem by the method 

similar to the proof in Theorem 3.4 of [4].

Theorem 3.2. If x is an efficient solution for (P) and if we assume 
that x satisfies a oon아raint qualification (L7J)for (E), i=L…,P，then 
there exist XeA+ and 亍그 0, yeRm sucht that V자 f&) + vy* g(x) = 0 
and yl g&)=0.

4. Duality Theorems

Now we establish duality theorems for (P) and (D).

Theorem 4丄 If, for all xeX and (u, X, y)^Y, (1) is pseudo-in - 
vex w.r.t. r\ for all i: or(2)is pseudo-invex w.r.t. n，then

f(x)^f(u)+ytg(u)e.

Proof. (1) Let xeX and (u入 y)点. Suppose 나lat f(x)W f(u) + ylg 
(u)e.

Then for some i, f,(x) V£(u)+yg(u) and for all j, j그스i, £(x)冬 fj(u) 
+ytg(u).

Since fr+^g pseudo-invex w.r.t. n and f1(x)+ytg(x) < fl(u) + ytg(u), 
we have

[ Vfl(u)+Vytg(u)] 다 (x, u) < 0.
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Since £+y*g is quasi-invex w.r.t. iq and &(x)+y，g(x)M fj(u) +ytg(u)> 
we have

[Vf)(u) + Vy*g(u)] T] (x, u) < 0.

Thus,

[Vkf(u) + Vytg(u)] x\ (x, u) < 0.

This is a contradiction.

(2)Let xeX and (x,人，y)sY. Suppose that f(x)< f(u) + ylg(u) e. 
Then

f(x) +yg(x)e< f(u) +y，g(u)e.

Moreover,

人¥(x) +y，g(x) < AT(u) +y，g(u).

By the pseudo-invexity of we have

[V人¥(u) + Vy，g(u)] t] (x, u) < 0.

This is a contradiction.

Theorem 4.2 Let x is an efficient solution for (P) and assume th가 

x satisfies a constraint (E7]) for (P), i=L…,P・ Then there exist 
y sucht that(瓦 兀 y)sY and the objective values of (P) and (D) are 
equal. If, also, (1) £+V g is pseudo-invex w.r.t. t] for all i or (2) i 
+yg is pseudo-invex w.r.t. u，then Cx, 人, y) is an efficient s이ution for 
(D).

Proof. By Theorem 3.2, there exist A+ and 0, y £ Rm such 
that 刃甘&) +\7此(又)=0 and^g(度)=0. Thus Cx, y) e Y. Since 
y'gCx) =0, the objective values of (P) and (D) are equal. Suppose th간 

(x,兀 y) is not an efficient solution for (D). Then there exists
(i「，人후, y*)eY such that
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吹)+予気又)心 f(u*)+y**g(u*)e.

By the similar method of Theorem 4.1, we can prove that

[V人리f(u*) + Vy*tg(u*)] n (x ,u*) <0.

This is a contradiction.
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