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COMPLEX HOLOMORPHIC LINE BUNDLES
AND PSEUDOCONVEXITY

Kwang Ho Shon® and Hong Rae Cho

1. Introduction

In this paper we investigate the relation between a holomorphic line
bundle over a complex n-torus T" and a Chern class. And, we introduce
the theorem that allows us to refer to the Picard variety of T" as a group
of weakly pseudoconvex manifolds, so that the Picard variety of T® is con-
sidered as an important tool for the research on a weakly pseudoconvex
manifold.

2. The holomorphic line bundle on a complex n-torus

Let C(O) be the sheaf of germs of continuous (holomorphic) functions
on T° and C*(0*) the sheaf of germs of nonvanmishing continuous (holo-
morphic) functions on T°. Since O CC and O* CC*. We have the fol-
lowing commutative, exact diagram :

0>Z->0>0" >0

l |

0—=>Z->C—>C"—>0.
This yields the commutative, exact diagram :
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0 H'(T"2) — H(T"0) > H(T0") .
- H(T"Z) > H(T~0) - H(T",0") > H(T"2) > -

5‘
- H'(T,Z) = H(T°C) = H'(T"C*) > H{(T"2) = --.
Here the verticle maps are induced by the natural inclusions of O in
C, O* in C* and the identity map of Z [3].

Definition 2.1(5]. For EcH'(T*C*) we call C,(E) = §*(E) the first
Chern class of E.

Lemma 2.2. Let @ : H'(T0*) = HY(T",C*) be the canonical map in-
duced by the matural imclusion of O* in C*. Then EeHY(T"0*) is a tri-
vial complex holomorphic line bundle over T if and only if ®(E) = 1.

Lemma 2.3. ®(E) = 1 if and only if C.(E) = 0.
By Lemma 2.2 and Lemma 2.3, we have the following theorem.

Theorem 2.4. EsH(T",0*) is a trivial complex holomorphic fine bun-
dle over T° if and only if C,(E) = 0.

3. Weakly pseudoconvex manifolds

Proposition 3.1[2]. Let Q be a domain of C* and let fC°(Q2,R). The
function f is pluriharmonic if and only if f is locally the real part of a
holomorphic function.

Let P be the sheaf of germs of C* pluriharmonic functions on T". Con-
sider D as the sheaf of germs of constant functions with values in
{26C: | z| = 1}. We define L : O* > P by L(H{x) = log! flx) |, xeU,
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feH(U). For geP, by Proposition 3.1, there 1s f£H(U) such that g is the
real part of f on a simply connected subset U. exp()e0* and L{exp(f
(x))) = log | exp(f(x)) | = loglexpleg(®))) =g{x) on U so that L is
surjective. Since Ker L= {f0* L) =0} ={zC: {z| =1} =D,
we get a (short) exact sequence of sheaves on T': 0—>D—>0* =>P—>
0. We denote by L* : H'(T"0*) - H'(T"P) the homomorphism induced
by L:O* = P. Since T" is compact, H'(T"0*) = C* and H(T"P) =
R so that H(T"0") - H(T",P) is surjective, Hence we have a (long)
exact sequence -
== H(T0*) - H(T"P) — H(T"D)
— H{(T"0") > H(T"P) —> -
Thus HY(T,D) = Ker L* CH{T,0").

Lemma 3.2{4]. Ker L* = {EcHY{T"0*) : C.{(E) = 0}.

Theorem 3.3. Every trivial complex holomorphic line bundle on T is
a weakly pseudoconvex manifold.

Proof. Let E be a trivial holomorphic line bundle on T°. By lemma 3.2,
EeKer L* = H!{(T",D) CH'(T"0"*). Hence there 1s (8,)eZ'(U,D) such
that {6,]} are transition functions of the line bundle n : E = T". Then
there are biholomorphic functions 6, : n7'(U,) = U, X C defined by 8, ° 872
(x,z) = (x,2) if and only if 6:(z) =z for xeUnNU.For acE, 0,(a)
= (na),z{(a)) if aen *(U,). We define ®: E—R by ®@) = {z(a) |2
if aen'(U). Then E. = {aeE : ®(a) <c} CCE for each ceR and the Levi
form L(®) = dzdz, is everywhere positive semi-definite. Hence E is a
weakly pseudoconvex manifold.
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