SHARP FUNCTION AND WEIGHTED L^{p} ESTIMATE FOR PSEUDO DIFFERENTIAL OPERATORS WITH REDUCED SYMBOLS

H. S. Kim and S. S. Shin

In 1982, N. Miller [5] showed a weighted L^{p} boundedness theorem for pseudo differential operators with symbols in S_{10}. in this paper, we shall prove the pointwise estimates, in terms of the Fefferman, Stein sharp function and Hardy Littlewood maximal function, for pseudo differential operators with reduced symbols and show a weighted L^{p}-boundedness for pseudo differential operators with symbol in $S_{o, \delta}^{m}, 0 \leq \delta \leq p \leq 1, \delta \neq$ 1, $\rho \neq 0$ and $m=(n+1)(\rho-1)$.

1. Introduction.

Let $a(x, \xi)$ be a sufficiently reguiar function defmed on $\mathrm{R}^{n} \times \mathrm{R}^{n}$ The pseudo differential operator A with symbol $a(x, \xi)$ is defined on the Schwartz space $S\left(R^{r}\right)=S$ of rapidly decreasing and infintely defferentible functions by the formula.

$$
A u(x)=\int_{R^{n}} \mathrm{e}^{2 \pi x ~} a(x, \xi) \hat{u}(\xi) d \xi^{\zeta}
$$

where $\hat{u}(\xi)=\int_{R^{n}} \mathrm{e}^{-2 \max } u(x) d x$ is the Fourier transform of u
For w satistying Muckenhoupt's A_{p} condition, $L^{p}(w d x)=L^{p}\left(\mathrm{R}^{n}, w d x\right)$ is
the space of all measurable functions f with $\|f\|_{\text {quw }}=\left(\oint_{R^{n}} \mid f(x) f w d x\right)^{v_{p}}$ < ∞

For a locally integrable function f.
(1) $f^{\prime \prime}(x)=$ the Fefferman Stein sharp function of f

$$
=s u p_{x \infty} \frac{1}{|Q|} \int\left|f(y)-\left(f_{Q}\right)\right| d y
$$

the supremum being taken over all cubes Q containing x and f_{Q} is the average value of f on the cube Q.
(ii) $\left.M_{f} f(x)=\sup _{Q} \frac{1}{|Q|} f_{0}|f(y)|^{r} d y\right)^{1 / n}$
the supremum being taken over all cubes containinig x.
(iii) $M f(x)=$ the Hardy -Littlewood maximal function

$$
=s u p_{Q} \frac{1}{|Q|} \int_{Q}|f(y)| d y
$$

the supremum being taken over all cubes Q containing x.

$$
\text { (iv) } \begin{aligned}
f^{*}(x) & =\text { the dyadic maximal function of } f \\
& =\text { sup } \left.\frac{1}{Q}\left|\int_{0}\right| f(y) \right\rvert\, d y
\end{aligned}
$$ the supremum being taken over all dyadic cubes Q.

We shall say that a symbol $a(x, \xi) \varepsilon C^{\infty}\left(\mathrm{R}^{n} \times \mathrm{R}^{n}\right)$ is in the class $S_{\kappa, 3}^{m}$ if it satisfies the estimate

$$
\begin{equation*}
\left.\left\lvert\,\left(\frac{\partial}{\partial x}\right)^{\beta}\left(\frac{\partial}{\partial \xi}\right)^{\mathrm{a}}\right.\right) a(x, \xi) \mid \leq C_{\alpha \beta}(1+|\xi|)^{m-\rho^{\prime} \alpha \mid+\delta} \tag{1.0}
\end{equation*}
$$

for all multi-indices α and β.
Note that $S_{\rho_{1} \delta_{1}}^{m_{1}} \partial S_{\rho_{1} \delta_{2}}^{m_{1}}$ if $\rho_{1} \leq \rho_{2} \delta_{1} \leq \delta_{2}$ and $m_{1} \geq m_{2}$.
We consider a symbol $a(x, \xi)$ which is represented as a sum of reduced symbols, plus another symbol vanishing on $|\xi|>1$ i.e.,

$$
\begin{equation*}
a(x, \xi)=a_{0}(x, \xi)+\sum_{k=z^{\prime}} V_{k} a_{k}(x, \xi) \tag{1.1}
\end{equation*}
$$

The symbol $a_{0}(x, \xi)$ vanishes for $|\xi|>1$, and there exists a constant C_{a} such that $\left\|\left(\frac{\partial}{\partial \xi}\right)^{a} a_{0}(x, \xi)\right\|_{\infty}<C_{\alpha}$. The a_{k} 's are reduced symbols which represented as

$$
\begin{equation*}
a_{k}(x, \xi)=\sum_{i=1}^{\infty} b_{j k}(x)_{\psi}\left(2^{-\xi} \xi\right) \tag{1.2}
\end{equation*}
$$

where $b_{r k}$ satisfies $\left\|b_{\mu k}\right\|_{\infty} \leq C,\left\|\nabla_{s} b_{k k}\right\|_{\infty} \leq C^{\delta} .0 \leq \delta<1$, and $\psi \varepsilon C_{0}^{\circ}\left(\mathrm{R}^{n}\right)$ is supported in $\left\{\frac{1}{3} \leq|\xi| \leq 1\right\}$, and $\sum_{k-z^{n}} V_{k}$ is a positive convergent series.

2. Main Results.

In order to prove our first Theorem, we need the following Lemma.
Lemma 2.1 Let $\psi \varepsilon C_{0}^{\infty}\left(\mathrm{R}^{r}\right)$ with $\operatorname{supp} \psi \subset\left\{\frac{1}{3} \leq|\xi| \leq 3\right\}$. If $t \geq 0$, then there is a constant $C_{t} \geq 0$ such that the following inequalities hold.
(i) $|y|\left|\left|\int_{\mathbb{R}^{\mathrm{n}}} \psi\left(2^{-\xi \xi}\right) e^{2 n g} \varepsilon d \xi\right| \leq C_{f} 2^{(n-t)}\right.$ and
(ii) $|y|^{\mid}\left|\int_{R^{n}} \cup\left(2^{-\jmath} \xi\right) \xi_{t} e^{2 m y} d \xi\right| \leq C_{t} 2^{(x+1-t)}$
where ξ_{e} is the ℓ-th coordinate of ξ.

Above lemma is a slight modfication of Lemma 2.9 in N.Miller [5].

Theorem 2.2 Let A be a pseudo differential operator with symbol a (x, ξ) sattsfying (11) and (1.2), then there is a constant $c>0$ such that the pointwise estimate

$$
(A u)^{7}\left(x^{0}\right) \leq C M_{2} u\left(x^{0}\right) \text { for all } x^{0} \& \mathrm{R}^{n}, u \varepsilon \mathrm{~S}\left(\mathrm{R}^{n}\right)
$$

holds

Proof. The proof follows the lines of the argument in Theorem 2.8
of Miller [5]. Given $x^{0} \varepsilon \mathrm{R}^{\pi}$, we let Q be a cube containing x^{0} with center x^{\prime} and diameter d. Let $\tau \varepsilon C_{0}^{\pi}\left(\mathbb{R}^{n}\right)$ satisfy $0 \leq \tau(x) \leq 1$, be 1 when $\left|x-x^{\prime}\right|$ $\leq 2 d$, and vanish when $\left|x-x^{\prime}\right| \geq 3 d$. Then for $u \varepsilon S\left(R^{x}\right)$,
$\frac{1}{|Q|} \int_{Q}\left|A u(x)-(A u)_{Q}\right| d x$

$$
\left.\leq \frac{2}{T Q} \int_{Q}|A(r u)| d x+\frac{1}{T Q \mid} \int_{Q} \right\rvert\, A((1-\tau) u)(x)-\left(A((1-r) u)_{Q} \mid d x\right.
$$

Let Q^{\prime} be the cube centered at x^{\prime}, with sides of length $7 d$ parallel to those of Q. We can dominate the first term in the inequality above because A is bounded on $L^{2}\left(\mathrm{R}^{*}\right)$.

$$
\begin{align*}
\frac{2}{Q T} \int_{Q}|A(\tau u)| d x & \left.\leq\left. C\left(\left.\frac{1}{|Q|} \int_{Q} \right\rvert\, A(\tau u)\right)\right|^{2} d x\right)^{\frac{1}{t^{2}}} \tag{2.1}\\
& \leq C\left(\frac{1}{|Q|} \int_{R^{n}}|\tau u|^{2} d x\right)^{\frac{1}{2}} \\
& \leq C\left(\frac{1}{\left|Q^{\prime}\right|} \int_{Q^{2}}|u|^{2} d x\right)^{\frac{1}{2}} \\
& \leq C M_{2} u\left(x^{0}\right)
\end{align*}
$$

To deal with second term, we simplify notation, writing u for $(1-\tau) u$, and we assume that u has supported in the set $\left\{x:\left|x-x^{\prime}\right| \geq 2 d\right\}$. We must estimate the quantity $\frac{1}{|Q|} \int_{Q}\left|A u(x)-(A u)_{Q}\right| d x$.

We begin by decomposing the symbol $a(x, \xi)$ into the sum of reduced symbols and a symbol vanishing on $|\xi|>1$.

$$
\begin{aligned}
A u(x) & =\int_{\mathrm{R}^{u^{\prime}}} \hat{u}(\xi) a(x, \xi) e^{2 \pi x-\xi} \mathrm{d} \xi \\
& =\int_{\mathrm{R}^{n}} \hat{u}(\xi) a_{0}(x, \xi) e^{2 \pi x} \mathrm{~d} \xi
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{\mathrm{R}^{\pi}} u(y) \int_{\mathbb{R}^{n} k 2^{\pi}} \sum_{1} V_{k}(x, \xi) e^{2 x_{y}(x-y\}} d \xi d y \\
= & B_{u}(x)+\sum_{k<2^{\pi}} V_{\Delta} A_{k} u(x)
\end{aligned}
$$

We consider the first term of the last inequality. B is a pseudo differential operator whose symbol is $a_{0}(x, \xi)$; the ξ-support of this symbol is contained in the set $\{\xi:|\xi| \leq 1\}$ and $a_{0}(x, \xi)$ has the property that $\left|\left(\frac{\partial}{\partial \xi}\right)^{a} a_{0}(x, \xi)\right| \leq C_{\mathrm{a}}$. Hence we have

$$
\begin{aligned}
& (B u)^{\#}\left(x^{0}\right) \leq C M u\left(x^{0}\right) \text { for } r>1 \text {. Now } \\
& (A u)^{\#}\left(x^{0}\right) \leq(B u)^{\#}\left(x^{0}\right)+\sum_{k k^{2}} V_{k}\left(A_{k} u\right)^{\#}\left(x^{0}\right)
\end{aligned}
$$

Therefore the next task is to examine the operator A_{k}. For every $k \varepsilon Z^{*}$

$$
\begin{aligned}
& =\sum_{j=1}^{\infty} \int_{\mathbb{R}^{\pi}} u(y) \int_{\mathbb{R}^{n}} b j k^{(x)} \psi\left(2^{-\jmath \xi)} e^{2 \eta_{n}(x-y) \cdot \xi} d \xi d y\right. \\
& =\sum_{i=1}^{\infty} A_{j, k} u(x) .
\end{aligned}
$$

We now estimate $\left(A_{k} u\right)^{*}\left(x^{0}\right)$

$$
\begin{align*}
& \frac{1}{|Q|} \int_{Q}\left|A_{j} u(x)-\left(A_{\mu k} u\right)_{Q}\right| d x \\
& =\frac{1}{|Q|} \int_{Q}\left|\frac{1}{|Q|}\left\{A_{\mu t} u(x)-A_{\mu} u(z)\right\} d z\right| d x \tag{2.2}\\
& =\frac{1}{|Q|} \int_{Q}\left|\frac{1}{T Q \mid} \int_{Q}\right| \int_{\mathrm{R}^{\mathrm{n}}} u(y) \int_{\mathrm{R}^{\mathrm{n}}} \psi\left(2^{-\mu} \xi\right)\left[b_{p k}(x) e^{2 \mathrm{p}(-y) \xi}\right. \\
& \left.\left.-b_{p^{k}}(z) e^{2 \pi(x-y)}\right\rceil d \xi d y\right\} d z \mid d x
\end{align*}
$$

To estimate this last quantity, we distinguish two cases.

Case $1 \quad 2 \mathrm{~d} \geq 1$. Then(2.2) is dominated by

$$
\begin{aligned}
& \leq C \sum_{m=1}^{\infty} \int_{Q} \frac{2^{n m}}{\left|Q_{m}\right|} \int_{2 m \leq|y-x| \leq 2 m+1} \frac{|u(y)|}{|x-y|^{n+1}}|x-y|^{n+l} \\
& \mid \int_{\mathbf{R}^{\mathrm{V}}} \psi\left(2^{\nearrow \jmath \xi) e^{2 m(x-a)} \xi} \mathrm{d} \xi|d y| b_{\mu}(x) \mid d x\right.
\end{aligned}
$$

(Q_{m} is the cube with center x^{\prime}, sides parallel to thoese of Q and radius $\left.2^{n+1} d\right)$

The last term is bounded by

$$
C \sum_{m=1}^{\infty} d^{m} 2^{n \pi}\left(2^{m} d\right)^{-(n+))} 2^{-j} \frac{1}{T Q_{m} T} \int_{Q_{m}}|u(y)| d y
$$

(By Lemma 2.1, with $t=n+1$, and $\left\|b_{\mu}\right\|_{\infty} \leq C$)

$$
\leq C\left(2^{2} d\right)^{-1} M u\left(x^{0}\right)
$$

Case 2. $2 d<1$. In this case we write the last term of (2.2).

$$
\begin{aligned}
& \left.\frac{1}{|Q|} \int_{Q} \frac{1}{|Q|} \int_{Q} \sum_{m=1}^{x} \int_{2^{n y} \leq|y-x| \leq 2^{n+L_{Q}}}|u(y)| \right\rvert\, \int_{\mathrm{Rn}} \psi\left(2^{-\gamma} \xi\right) \\
& {\left[b_{j k}(x) e^{2 \pi(x-y) \xi}-b_{j k}(x) e^{2 \pi(\alpha-y)}{ }^{2}+b_{j k}(x) e^{2 m(x-y) \xi}\right.} \\
& -b_{j k}(z) e^{2 m(s-y) \xi]} \mathrm{d} \xi \mid d y d z d x \\
& \left.\leq \frac{1}{|Q|} \int_{Q} \frac{1}{|Q|} \int_{Q} \sum_{m=1}^{\infty} \int_{2 m_{d} \leq 1,-r^{\prime}!\leq 2^{m+1 d}}|u(y)| \right\rvert\, \int_{R^{\mathrm{B}}} \psi\left(2^{-\gamma \xi}\right) \\
& {\left[e^{2 \pi(x-y) \xi}-e^{2 x(x-y)}\right] \cdot b_{\mu}(x) d \xi \mid d y d z d x}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{1}{|Q|} \int_{Q} \frac{1}{|Q|} \int_{0} \sum_{m=1}^{\infty} \int_{2 m_{d} \leq\left|\gamma-x^{n}\right| \leq 2 m+u_{d}}|u(y)| \right\rvert\, \int_{R^{n}} u\left(2^{-} \xi\right) \\
& {\left[b_{j k}(x)-b_{j k}(z)\right] e^{2 m(\alpha-y)} d y \mid d y d z d x} \\
& =\mathrm{A}+\mathrm{B}
\end{aligned}
$$

First to deal with A,

$$
\begin{aligned}
& e^{2 \pi(t-y) \xi}-\mathrm{e}^{2 \pi(z-y) \xi} \\
& =\sum_{i=i}^{x}\left(x_{\ell}-z_{\ell}\right) \int_{0}^{1} \frac{\partial}{\partial x_{i}} e^{\left.\frac{3 \pi}{2 \pi}(t)-y\right)} t d t
\end{aligned}
$$

where $x(t)=t x+(1-t) z, x_{\ell}$: the ℓ-th coordinate of x.
Note that (i) $\left|x_{e}-z_{e}\right| \leq d$ since both x and z are in Q, and (ii) if $2^{m} d \leq\left|y-x^{\prime}\right| \leq 2^{n+1} d$, then $2^{n-1} d \leq|x(t)-y| \leq 2^{m+2} d$ since $x(t) \varepsilon Q$.

A is dominated by

$$
\begin{aligned}
& C \sup _{x \in Q} \sum_{\infty=1}^{n} \frac{1}{|Q|} \int_{Q} \frac{1}{|Q|} \int_{Q} \int_{2^{m d x} \leq|y x| \leq x^{m}+1 / 4} \frac{|u(y)|}{y-\left.x\right|^{x+1 / 2}} \\
& \sum_{z=1}^{n}\left|x_{\ell}-z_{\ell}\right| \cdot \int_{0}^{1}|x(t)-y|^{n+1 z} \\
& \left\lvert\, \int_{\mathrm{R}^{n}} \psi\left(\left.2^{-\xi)}-\frac{\partial}{\partial x_{\ell}} \partial^{2 \operatorname{mn}(t)-y)} \xi \xi|d t d y d z| b_{\mu^{k}}(x) \right\rvert\, d x\right.\right. \\
& \left.\leq C \sum_{m=1}^{\infty} 2^{(n+1) n}\left(2^{m} d\right)^{-n-1 / 2}(n d) 2^{\prime /} d^{n} \frac{1}{\mid Q_{m}}\left|\int Q_{m}\right| u(y) \right\rvert\, d y
\end{aligned}
$$

(Lemma 2.1, $t=n+1 / 2,\left\|b_{k}\right\|_{\infty} \leq C$
and Q_{m} is the cube with centered x^{\prime}, sides parallel to those of Q

$$
\begin{aligned}
& \text { and radius } \left.2^{m+1} d\right) \\
& \qquad \leq C \sum_{m=1}^{\infty} 2^{-\frac{\pi}{2}} d^{1 / 2} 2^{2} M u\left(x^{0}\right) \\
& \quad \leq C d^{1 / 2} 2^{1 / 2} M u\left(x^{0}\right)
\end{aligned}
$$

Next we estimate B

$$
\begin{aligned}
& B \leq \frac{1}{|Q|} \int_{Q} \frac{1}{|Q|} \int_{Q} \sum_{m=1}^{\infty} \int_{2 \sigma_{d} \leq!,-x!\leq x^{a}+6 d} \frac{|u(y)|}{|z-y|^{n+1}} \\
& |z-y|^{n+i} \int_{\mathbb{R}^{n}} \xi\left(2^{-\jmath \xi)} e^{\operatorname{2nn}(z-y)} t \xi d y\right. \\
& \left|b_{\mu k}(x)-b_{\mu}(z)\right| d z d x \\
& \leq C \sum_{m=1}^{x}\left(2^{m+i} d\right)^{n}\left(2^{m} d\right)^{-(n-1)} 2^{-,} \frac{1}{\mid Q_{m}} T \int_{Q_{m}}|u(y)| d y
\end{aligned}
$$

(By Mean Value Theorem, $\left\|b_{p k}(k)-b_{p k}(z)\right\|_{\infty} \leq C d\left\|\nabla b_{k k}\right\|_{\infty}$ and $\left\|\nabla b_{\mu 火}\right\|_{\alpha} \leq C 2^{\omega}$ and Lemma 2.1, $t=n+1$. Q_{m} is above Q_{m})

$$
\begin{aligned}
& \leq C \sum_{m=1}^{m} 2^{-m 2^{(6-1)}} \frac{1}{\mid Q_{m} T} \int_{Q_{m}}|u(y)| d y \\
& \leq C 2^{(6-1)} M u\left(x^{0}\right)
\end{aligned}
$$

Putting the two cases together, we have shown that if Q is any cube containing x^{0}, then

$$
\frac{1}{|Q|} \int_{e}\left|\sum_{i=1}^{\infty} A_{j} u(x)-\left(\sum_{i=0}^{\infty} A_{j} u\right)_{Q}\right| d x
$$

$$
\begin{aligned}
& \quad \leq C \sum_{j=0}^{\infty} \frac{1}{T Q T} \int_{Q}\left|A_{j k} u(x)-\left(A_{j k}\right)_{Q}\right| d x \\
& \leq C\left\{\sum_{z_{i} \geq 1}\left(2^{\alpha}\right)^{-1}+\sum_{z \in \leq 1}\left(d^{1 / 2} 2^{2 / 2}+2^{(\delta-1)}\right)\right\} M u\left(x^{0}\right) \\
& \leq C M u\left(x^{0}\right)
\end{aligned}
$$

Thus we have

$$
\left(\sum_{i=0}^{\infty} A_{,} u\right)^{\#}\left(x^{n}\right) \leq C M u\left(x^{0}\right)
$$

Going back to our original notation, and summarizing we have-shown that if Q is any cube containing x^{0} then

$$
\begin{align*}
& \left.\frac{1}{|Q|} \int_{Q} \right\rvert\,\left(A u(x)-(A u)_{Q} \mid d x\right. \\
& \leq(A(\tau u))^{\text {\# }}\left(x^{0}\right)+(B((1-\tau) u))^{\#}\left(x^{0}\right)+\sum_{k, z^{n}} V_{k}\left(A_{k} u\right)^{*}\left(x^{0}\right) \tag{2.3}\\
& \leq C_{1} M_{2} u\left(x^{0}\right)+C_{2} M_{r} u\left(x^{0}\right)+C_{3} \sum_{k u^{T}} V_{k} M u\left(x^{0}\right) \text { for } r \geq 1 \\
& \leq C M_{q} u\left(x^{0}\right) \text { for } q \geq 2
\end{align*}
$$

When we take the supremum of the left side over all cubes containing x^{4}, we obtain the inequality

$$
\begin{equation*}
(A u)^{\#}\left(x^{\theta}\right) \leq C M_{2} u\left(x^{\theta}\right) \text {, Q.E.D. } \tag{2.4}
\end{equation*}
$$

We now wish to show the sharp function estimate for general symbol $\mathrm{a}(x, \xi) \varepsilon S_{p \delta,}^{m}, 0 \leq \delta \leq \rho \leq 1, \delta \neq 1, p \neq 0$, and $m=(n+1)(\rho-1)$. Take a function $\lambda(\xi) \varepsilon C_{0}^{\infty}\left(R^{n}\right)$ satisfying $\operatorname{supp} \lambda \subset\left\{\frac{1}{3} \leq|\xi| \leq 1\right\}, \sum_{1}^{\infty}=$ ${ }_{-\infty} \lambda\left(2^{-\jmath}\right)=1\left(\xi_{\neq 0}\right)$. And put $\varphi(\xi)=1-\sum_{i=1}^{\infty} \lambda\left(2^{-\jmath} \xi\right)$. Put then $a_{0}(x, \xi)$
$=\varphi(\xi) a(x, \xi)$ and $a,(x, \xi)=\lambda\left(2^{-\xi}\right) a(x, \xi), j=1,2, \cdots$. Then $a,(x, \xi)$ satisfy the condition (1.0) uniformly in j and $a_{0}(x, \xi)$ has the ξ-compact support.

Lemma 2.3. Let $a(x, \xi)$ and $a(\mathrm{x}, \xi)$ be above. Let $\psi(\xi) \varepsilon C_{0}^{\infty}\left(\mathrm{R}^{n}\right)$ be such that $\psi \lambda=\lambda$ and supp $\psi \subset\left\{\frac{1}{3} \leq|\xi| \leq 1\right\}$, Then there exist functions $a_{j,}, \mathrm{j} \in \mathrm{N}, k \varepsilon Z^{n}$, such that
(i) $\left\|a_{j k}\right\|_{\infty} \leq C$
(ii) $\left\|\nabla a_{j k}\right\|_{\infty} \leq C 2^{\phi}$
(iii) $a,(x, \xi)=\sum_{\text {keza }}\left(1+|k|^{3}\right)^{-\frac{n+1}{n}} a_{k}(x) e^{2 u k} \xi^{-j} \psi\left(2^{-J} \xi\right)$

Proof. It is similar that of in [2].

Lemma 2.3 says that above symbol $a(x, \xi)$ can be represented as a sum of reduced symbols plus another symbol vanishing on $|\xi|>1$. That is:

$$
\begin{aligned}
a(x, \xi) & =a_{0}(x, \xi)+\sum_{k=1}^{\infty} \sum_{k=2 n^{n}}\left(1+|k|^{2}\right)^{\frac{n+1}{3}} a_{k}(x) e^{2 m k k} e^{-\xi} \Psi\left(2^{-\xi} \xi\right) \\
& =a_{0}(x, \xi)+\sum_{k+2 z^{n}}^{\infty}\left(1+|k|^{2}\right)^{-\frac{n+1}{2}} a_{k}(x, \xi)
\end{aligned}
$$

where $a_{k}(x, \xi)=\sum_{,=1}^{\infty} a_{j k}(x) e^{2 n k_{n k} \xi z^{-\prime}} \psi\left(2^{-\xi} \xi\right)$ is a reduced symbol and the double series converges absolutely.

Theorem 2.4. Let A be a pseudo differential operator with symbol a ε $S_{o \mathrm{~b}, 0}^{m} \leq \delta \leq \rho \leq 1, \delta \neq 1 \rho \neq 0, m=(n+1)(\rho-1)$. Then there is a constant $C>0$ such that the pointwise estimate, $(A u)^{*}\left(x^{0}\right) \leq C M r u\left(x^{0}\right)$ for all $x^{0} \varepsilon \mathrm{R}^{n}, u \varepsilon S\left(\mathrm{R}^{n}\right)$
and $1<r<\infty$, holds.
Furthormort, for $1<p<\infty$ and $: \varepsilon A_{\phi}$ above A has a bounded extenston to all of $L^{P}\left(\mathrm{R}^{n}, w d x\right)$.

Rroof. By Lemma 2.3, $a(x, \xi)$ can be represented as a sum of reduced symbols, plus another symbol vanishing on $|\xi|>1$. Put $b_{j k}(x)=e^{2 \pi x u} \xi_{2}^{-1}$ $a_{j k}(x)$ and put $V_{k}=\left(1+|k|^{2}\right)^{-\frac{1}{2}}$, then A satisfies the condition of [Theorem 2.2]. By [Theorem 2.2] and [Theorem 5.[3]], A is bounded on $L^{P}\left(\mathrm{R}^{n}\right), p>2$. We consider A^{*}, the adjoint of A. It is also a pseudo differential operator with symbol in $S_{\mathrm{f}, ~ \delta, ~[4], ~[6] . ~ T h u s ~}^{A^{*}}$ is bounded on $L^{p}\left(\mathrm{R}^{n}\right), 2<p<\infty$, by [Theorem 2.2] and [Theorem 5. [3]]. Hence A is bounded on $L^{p}\left(\mathrm{R}^{n}\right), 1<p<2$, and consequently on $L^{2}\left(\mathrm{R}^{n}\right)$ as well, by interpolation. This means that A is bounded on $L^{P}\left(\mathrm{R}^{n}\right)$ for $1<p<\infty$.

By replacing $M_{2} u(x)$ by $M u(x), 1<r<\infty$, in (2.1), (2.3) and (2.4) of the proof of [Theorem 2.2], we get the desired result because $M u\left(x^{0}\right)$ $\leq M_{r} u\left(x^{0}\right), 1<r<\infty$.
We next go to the proof of the second assertion.
For $u \varepsilon S\left(\mathrm{R}^{n}\right)$ and $\omega \varepsilon \mathcal{A}_{\phi}$,

$$
\begin{aligned}
\|A u\|_{p \|} & \leq\left\|(A u)^{*}\right\|_{p \%} \leq C\left\|(\mathrm{Au})^{\#}\right\|_{p *} \\
& \leq C \|\left(M_{, u} \|_{p w} \text { if } \mathrm{I}<r<\infty\right. \\
& \leq C\|u\|_{p \%} \text { if } 1<r<p
\end{aligned}
$$

Since $A u \varepsilon S \subset L^{p}\left(\mathrm{R}^{n} w d x\right) \cap L^{1}\left(\mathrm{R}^{n}\right)$, we can apply Lemma 2.7 in Miller [4] to prove the second inequality. So we can now extend A to a bounded operator on $L^{P}\left(\mathrm{R}^{n}, w d x\right)$ because $S\left(\mathrm{R}^{n}\right)$ is dense in $L^{P}\left(\mathrm{R}^{n}, w d x\right)$.

REFERENCES

[1] R. Beal, A general calculus of pseudo defferential operators, Duke Math. Journal Vol. 42(1975), 1-41.
[2] R.R. Coifman and Y.Meyer, Au delà des opérateurs pseudo-differentiels, Astérisque no. 57, Soc. Math. France(1978).
[3] C.Fefferman and EM.Stein, H^{p} spaces of several variables, Acta Math. 129(1972), 137-193
[4] L.Hormander, Estimates for translation invanant operators in L^{P}-spaces, Acta Math. 104(1960), 93-140.
[5] N.Miller, Weighted Sobolev spaces and pseudo differental operators with smooth symbols. Trans. Amer. Math. Soc 269(1982), 91 - 109.
[6] R.Wang and $\mathrm{C} . \mathrm{Li}$, On the L^{\prime}-boundedness of several classes of pseudo-defferential operators Chinese Ann. Math, 5B(1984), 193-213.

Department of Mathematics
Kyeongbook University
Kyeong book 702-701
Korea

