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ABSTRACT

The tidal radii of globular clusters reflect the tidal field of the Galaxy. The mass
distribution of the Galaxy thus may be obtained if the tidal fields of clusters are
well known. Although large amounts of uncertainties in the determination of tidal
radii have been obstacles in utilizing this method, analysis of tidal density could
give independent check for the Galactic mass distribution. Recent theoretical mod-
eling of dynamical evolution including steady Galactic tidal field shows that the
observationally determined tidal radii could be systematically larger by about a
factor of 1.5 compared to the theoretical values. From the analysis of entire sample
of 148 globular clusters and 7 dwarf spheroidal systems compiled by Webbink
{1985), we find that such reduction from observed values would make the tidal
density {the mean density within the tidal radius) distribution consistent with the flat
rotation curve of our Galaxy out to large distances if the velocity distribution of
clusters and dwarf spheroidals with respect to the Galactic center is isotropic.

I. INTRODUCTION

The globular clusters have been used to probe the large scale Galactic mass distribution since
they can be traced to large distances. There are essentially two ways to explore the Galactic mass
distribution using globular clusters: kinematics (e. g., Frenk and White 1980; Thomas 1988) and
tidal density (e.g., Peterson 1974; Innanen, Harris and Webbinlf 1983).

The tidal density is defined as the mean mass density within tidal radius and it is proportional
to the mean Galactic density within the (orbital) Galactocentric radius if the cluster’s orbit is
circular. Therefore it is possible to determine the Galactic mass distribution if tidal density dis-
tribution of globular clusters is known as a function of Galactocentric distance. However there are
some complications: (1) the clusters do not move in circular orbits; (2) it is very difficult to
determine the tidal density observationally due to uncertainties in both cluster's mass and the
tidal radius. Because of these difficulties, this method is by no means superior to others but it is

still important as an independent determination.
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The conventional definition of tidal radius is the place where the density becomes zero. It is
very difficult to find such a place from the observations because the surface brightness becomes
very low near the tidal boundary. Actual determination of tidal radii has been based on extrapola-
tion of surface brightness distribution of inner parts, which resembles that of the lowered istother-
mal models (King models) very closely. Obviously large amounts of errors could be introduced
through this extrapolation process.

Innanen, Harris and Webbink (1983; referred to IHW hereafter) have made an extensive study
regarding the tidal radius and its implications. They have analyzed the tidal densities of 66 well
observed systems (globular clusters and dwarf spheroidals) and found that the Galactic mass
distribution is consistent with that obtained from flat rotation curve (i.e., Mg(R) oc R). They also
noted that the inferred tidal field appeared to be systmatically weaker than that computed from
the flat rotation velocity of 220 km/sec. One obvious reason is the systematic understimate of
mass-to-light ratio of globular clusters, thereby reducing the tidal density by the same factor.
However, careful modeling of mass distribution based on both photometric and spectroscopic
observations does not seem to indicate any strong deviation from conventional values of M/Ly
~ 1.7 (in solar units). The other reason could be due to the systematic errors in tidal density
determination since the tidal density is proportional to inverse of third power on the derived tidal
radius.

The purpose of the present study is to re-examine the theoretical implications of tidal radii on
the mass distribution of the Galaxy, and to see what can be learned from the analysis of tidal
density distribution. Our major extension from the very extensive study by IHW on this subject is
to use larger sample of clusters. We also introduce a new notion that the observed tidal
radii may be systematically wrong by a constant factor based on theoretical modeling of dynami-
cally evolving clusters in a steady Galactic tidal field by Lee and Ostriker (1986).

This paper is organized as follow: We review the expected distribution of tidal radii in in an
idealized Galactic potestial §II. The results of data analysis for a large sample of globular clusters
and dwarf spheroidals are presented in §lll and a summary is given in the last section.

II. TIDAL DENSITY FOR NON-CIRCULAR ORBITS

We will follow the formalism by IHW for the definition of tidal density. The shape of the
Galaxy is assumed to be spherically symmetric, which may be a good assumption at large
distances (several kpc) from the Galactic center. We will further assume that the potential is that of
a singular isothermal sphere (SIS) which represents many galaxies with flat rotation curves very
well. IHW assumed that the tidal radius is determined by the tidal field at the perigalactic passage.
This assumption has been subsequently supported by the numerical study by Allen and Richstone
(1988).*

Under these assumptions the distance to the first Lagrangian point for a cluster moving in a

non-circular orbit, whose perigalactic distance is R, can be calculated from
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where M, is the cluster mass, Mg(R,) is the Galactic mass within R, and A is the radius of a
hypothetical circular orbit whose orbital energy is the same as the actual orbit.

The shape of Roche surface (the place at which the tidal force balances with the gravity) is not
spherical. The distance to the first Lagrange point is farthest on this surface. Since the isopoten-
tial surface is spherical in the inner parts, the tidal radius determined by the extrapolation would
obviously be the shortest distance (e. g., Spitzer 1988). In the case where the variation of the
Galactic mass over a cluster scale is negligible, the tidal radius is two-third of the distance to the
first Lagrangian point. Therefore the mean density within the tidal radius r, (i. e., tidal density)
becomes
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where we have used the identity Mg(R,) = vazci,/ G for an SIS with the rotation velocity being
vcir-

If the orbits of clusters are circular, equation (2) simply becomes

81 V%,

Pud = 67 GRZ,

(3)
Thus the Galactocentric distance versus tidal density should become a straight line in a log-log
plot. The presence of observational errors will introduce the scatter in this plot.

If the orbits are non-circular, R, < A and R, <Rg so that £ 4 is greater than 81V 2, /167
GR?s. Therefore, the data points in the plot of tidal density against the present Galactocentric
distance should appear above the theoretical line drawn in accordance with the right-hand-side
of equation (3).

In equation (2) both R, and A are unknown. For an SIS potential, it can be shown that

dn (R,/R(t)) = In (R,/A), (4)

where R(t) is the dependence of the robital radius with time and the brackets represent the time
average. Multiplying equation (3) by R%; and replacing A by Rg, where Rg now represents the
present Galactocentric distance, we get
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From the equation (4) we can compute R,/R for each cluster. The individual value of this
quantity is not particlulary meaningful because it is continuously varying function of time if the
cluster is moving on a non-circular orbit. However, we can get an unbiased distribution of R,/
R for a sample if the orbital phase of a given cluster is random so that current distribution of
galactocentric distances has no particular bias. The distribution function can be computed theore-
tically for a given potential if the nature of orbits {(or velocity ellipsoid) is known. Therefore the
observed frequency distribution of R,/R is a combination of the shape of Galactic potential and
the velocity ellipsoid of clusters against the Galactic center. Unfortunately it is very difficult to
separate the velocity distribution effect, but we should be able to put some constraints on that

based on various reasons. We now turn into the analysis of observed data.

llI. DATA ANALYSIS AND DISCUSSIONS

1. The Data Set

Webbink {1985) has made an extensive compilation of all data for 148 Galactic globular
clusters and 7 dwarf spheroidal systems. We have used these data for tidal radii distribution. The
observational error in tidal radii is estimated to be € (logr) > 0.1.

In order to obtain the mass of individual cluster, we have assumed M/L,, = 1.7 in solar units
for all globular clusters following lllingworth (1976) and Webbink (1985). Since the dwarf spher-
iodals are known to have widely varying M/L we used Kormendy (1987) and Aaronson and
Olzewlski’s (1986) indivdidual values of M/L for each system based on radial velocity measure-
ments.

The tidal radius in King models (also in observational definition) is the place where the density
becomes zero. However, since stars continuously escape from cluster through the tidal boundary,
the density at tidal radius will not be zero. Numerical studies by Lee and Ostriker (1987, also by
Lee, Fahlman and Richer 1991) indicate that the radius where the tidal force balances the
internal gravitation is about a factor of 1.5 smaller than that defined by fitting to King models in
the inner parts. This process will give a tidal radius simjlar to that obtained by extrapolation. We
thus reduced the tidal radii in Webbink’s compilation by the same factor in computing the tidal
densities of clusters discussed below.

2. Tidal Densities versus Galactocentric Distances

As discussed earlier, the tidal density is expected to lie above the line computed from equation
(3) if the clusters move in non-circular orbits. In Figure 1, we show a plot of £ ,4 versus Rg for
the entire sample. Also shown as a solid line is the theoretical tidal densities for circular orbits in
an SIS potential with V;, = 220 kms !. Although this is a scattered diagram, observed tidal
density distribution appears to be consistent with the assumed Galactic potential of an SIS in the
sense that most of the data points lie above the solid line. If we had not reduced the tidal radii by

a factor of 1.5, many data points lie below the straight line, which represents the minimum tidal
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density for a given Galactocentric radius if the tidal density is really determined at the perigalactic

passage.
We have performed the least-square fit to the relationship

logr g = —alog(Rg)+Db. (6)

where a and b are constants. We have excluded clusters with Rz < R, where R, is the cut-off
radius. We have varied R, from 1 to 30 kpc in order to find any differences in the behavior of
clusters with small R; compared to those with large Rg. The results are listed in Table 1, which
shows that the slope a remains to be a constant around 2 as long as K. > 3kpc. The slope

Table 1. Least Square Fitting for log Rs versus log # 4.

R. N a

1 152 1.70 + 0.10
2 140 1.77 + 0.13
3 118 203 +0.16
10 60 2.05 + 040

30 23 203 + 1.00

becomes smaller if we include clusters whose Rg are smaller than 3 kpc. This may be caused by
several effects: (1) the orbit of clusters with small R could be more circular than those with large
R because of dynamical friction that destroys clusters with radial orbits, (2) the potential in the
inner parts deviates significantly from that of an SIS, and (3) clusters having small R; are
expected to experience strong tidal shocks (e. g., Aguilar, Hut and Ostriker 1988) that could
change the tidal density.

In Figure 1 the result for the least-square fit with R, = 3kpc is shown as a dotted line. The
slope a is very close to 2, the value expected from the Galactic potential whose rotation curve is
flat.

From Figure 1, one can easily guess that the use of the original tidal radii from Webbink's table
will result in putting many data points lie well below the solid line. The reduction factor of 1.5 in
tidal radii has raised all tidal densities by about a factor of 3.4, making the tidal density distribu-
tion more consistent with the known Galactic mass distribution.

The fact that systematically smaller r,’s give better distribution for R,/Rs supports the idea that
the density at tidal radius is indeed non-zero. As pointed out by IHW, raising M/L will have the
same desirable effect, but the required increase in M/L would be 1.5° = 3.4 which cannot easily
be reconciled with the mass estimates based on velocity dispersion measurements of globular
clusters.

The mass-to-light ratios for globular clusters have been determined by various means. King's
core fitting formula (e. g., Richstone and Tremaine 1986) could be used to obtain central M/L.
lllingworth (1976) derived the M/L for selected clusters based on central velocity .dispersion
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Fig. 1. Tidal density versus Galactocentric distance for the entire sample. The solid line is for a SIS potential

with V,, = 220 kms ! and the dotted line is the least square fit to the data with Rz > 3 kpc.
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Fig. 2. Distribution of R,/R for the entire sample with Rs > 3 kpc. The dotted line is the theoretical
distribution for a SIS potential assuming isotropic velocity distribution.



TIDAL DENSITIES OF GLOBULAR CLUSTERS 103

measurements and fitting the data to King models. Various other analyses showed that M/L of
globular clusters have very small variations from a cluster to another with the midian value being
about 1.7. Most photometric, spectroscopic and star count data set for globular clusters can be
equally well fitted to multi-component King models, but the resulting M/Ly still lie between 1.5
and 3 {Pryor, McClure, Fletcher and Hesser 1988).

On the other hand, Richer and Fahlman (1989) found that there may be a large number of low
mass stars (m < 0.1Mg) in a globular cluster M71 based on the extrapolation of mass function
derived from deep CCD data. If this is a common phenomenon in globular clusters, the M/L is
very poorly determined because of very litlle dynamical effects that these stars produce to the
clusters (especially to the central parts where most of detailed observations are targeted), but M/
L is still expected to be smaller than 3.

In summary, the multi-mass models tend to produce larger values for M/L compared to
single-component ones, but more than a factor of 3 increase from the conventional value
appears to be rather difficult to achieve. Thus we conclude that the varying M/L alone would not

be sufficient to make the observations consistent with theory.
3. Distribution of R,/Rg

One can obtain unbiased distribution of R,/R¢ using equation (4) from the observed data.
Such distribution could be used to probe the Galactic potential if the velocity distribution of the
clusters with respect to the Galaxy is known.

We have shown the frequency distribution of R,/R; as a histogram for the entire sample
(excluding systems with R < 3kpc). The dotted line is a theoretical frequency distribution
assuming isotropic velocity distribution in an SIS potential. Both curves are normalized such that
the total area becomes unity.

It is clear that the observed result is consistent with the theoretical expectation for an SIS
potential except near R,/Rs; = 1. The broadening near R,/Rs = 1 can be attributed to the
observational errors. The estimated error of € {Inr) = 0.1 appears to be suffient to make such
broadening. This is a significant impovement from [HW who found that their data deviate
appreciably from the theoretical curve in the sense that there are too many clusters whose R,,/Rg
> 1. Again such an improvement is achieved by the reduction of tidal radius.

The similarity between the observed data and theoretical curve does not necessarily mean that
the galactic potential is that of an SIS and the velocity distribution is isotropic.

The extent of galactic halo with r 2 density distribution is not well established. While the timing
argument for our Galaxy and M31 indicates very large halo (larger than about 100 kpc, e.g.,
Binney and Tremaine 1987), the kinematical data for globular clusters and satellite systems imply
smaller halo (about 40 kpc; e. g., Little and Tremaine 1987). Our sample contains systems whose
R reach up to more than 100 kpc, but the Galactic mass distribution at that distance becomes
very uncertain because the number of systems decrease rapidly with distances. In addition, one
may expect that the velocity distribution could change at large distances. If the orbits of clusters

are predominantly radial at large distances while those in the inner parts is isotropic, the observed
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distribution of R,,/R¢; could still be consistent with a much smaller halo modelii. e., Ryyo <
40kpc).

The kinematical data may contain information regarding the velocity distribution of clusters. If
the ambiguity in velocity distribution is eliminated, the Galactic mass distribution can be much
better constrained. This subject, which is beyond the scope of this paper, will be treated in the

forthcoming papers.

IV. SUMMARY AND CONCLUSION

Our analysis of tidal densities of entire globular clusters and dwarf spheroidals implies that
either current esimates for the M/L,, are too small by a factor of more than 3 or the tidal radii
are overestimated by about a factor of 1.5 but significant increase of M/L from conventional
value of 1.7 is very unlikely. Systematic reduction of tidal radii has been suggested by Lee and
Ostriker (1986) based on the theortical investigation of dynamical evolution of globular clusters in
a steady galactic field.

By changing the definition. of the tidal radii described above, the observed distribution of R,/
Rs as well as ¢, versus Rg relationship become more consistent with the theoretical expecta-
tions for clusters if the Galactic potential is close to that of an SIS and the velocity distribution of
clusters with respect to the Galactic rest frame. This does not necessarily mean that the Galactic
mass distribution is similar to SIS since the the data may still be consistent with the smaller halo
model (Little and Tremaine 1987). if the orbits become more radial as the Galactocentric distance
increases. Thus it would be useful to incorporate with the kinematic data in order to eliminate
ambiguities in velocity distribution of clusters.

[ would like to thank Scott Tremaine for useful conversations.
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