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Abstract

The classic machine repair problem is extended to the case where a number of

different machines are arranged in the sequence of operation. The steady-state

availability of the system with a series of operating machines is maximized under

some constraints such as total cost, available space. In order to find the optimal

numbers of spare units and repair channels for each operating machine, the

problem is formulated as non-linear integer programming(NLIP) problem and an

efficient algorithm, which is a natural extension of the new Lawler-Bell algorithm

of Sasaki et al,, is used to solve the NLIP problem. A numerical example is given

to illustrate the algorithm.

1. Introduction

In the classic machine repair problem or
repairman problem[l, 2], m identical
machines are cperating in parallel, and s
spare machines and a repair facility having

x parallel repair channels(i.e., capahle of

repairing x machines simultaneously;

obviously, we could consider the facility as

_consisting of X repairmen) support the oper-

ating machines, A problem in the machine
repair with spares model is the determina-
tion of the optimal numbers of spare units
and repair channels[10, 11}. The classic
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machine repair problem has been treated
and extended extensively in the literature.
Some of them are the cases of a multi-stage
repair[5], heterogeneous machines[6], and
multiple repair levels[7].

In the classic machine repair problem and
its extensions, there is only one operating
stage and all the operating machines are
doing the same job. However,in many cases,
the number of operating stages is more than
one and the operating machine at each
stage is doing its own job. A series of oper-
ating machines, arranged in the sequence of
operation, in a production line may be the
case.

This paper deals with a machine repair
problem for a series of operating machines.
The steady-state availability of the system
with a series of operating machines is
maximized under some constraints such as
total cost, available space, etc.

Sasaki et al.[9] considered a similar
problem, but in their study a single repair
channel was provided for each operating
machine and the problem was only to
determine the number of spare units for
each operating machine., The purpose of
this paper is to determine simultaneously
the optimal number of repair channels and
the optimal number of spare units for each
operating machine. The problem is for-
mulated as a constrained NLIP problem
and the new Lawler-Bell algorithm
proposed by Sasaki et al.[9] is tailored to
solve the problem efficiently. A numerical
example is given to illustrate the optimiza-

tion procedure.

2. Model Formulation

The following assumptions and nota-

tions are used in this paper.

2-1. Assumptions

1. In each operating stage, a machine is
operating and a number of spare units and
repair channels support the operating
machine.

2. The operating stages are connected in
series.

3. The distributions of lifetime and re-
pair time at each stage are exponential.

4. The time for replacement is negligi-
ble.

5. The failures of units in the system are
mutually independent.

6. Spare units in standby do not fail.

2-2, Notations

n : number of operating stages in
the system
X; @ number of repair channels at
j-th stage
: number of total units(operating
unit plus spare units) at j-th stage

T : {(failure rate/repair rate) of a
unit used in j-th stage

Alx;y)) : steady-state availability of j-th
stage
€1;,Co; - COst of a repair channel and 3

unit at j-th stage
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S1,8z; © required spaces of a repair
channel and a unit at j-th stage,

C : upper bound of system cost

S : total available space

Other notations are defined as needed.

Using the steady-state probabilities of
the classical machine repair problem[4], we
obtain the following steady-state availa-

bility of j-th stage:

S /R DI /X L)

S w0 {r%/k 1 o (/xR |
Axy)= w0 (T /K TS e (XX x 1 )

, Jif x=y-1
Ls voi (/i 1 )/8 8, (/K 1)

Jifx=y.

Since the operating stages are connected
in series, and the number of repair channels
need not be larger than the number of units
in each stage, the problem is formulated as

the following NLIP problem:

Maximize L, A(x;, ;) weeeoremeeeees {2.1)
subject to ‘

S0, (CuX)tCny)=C - (2.2}
S (suXs sy <SS - (2.3)
X<y, i=1,2,-,n) - (2.4)
x; and y; are nonnegative integers,

where A(x;, v;) is given by equation(1).
Equation(2.1} is the steady-state
probability that all the n stages are simul-
taneously operating where their individual
operations are independent, i.e., nonfailed
siages continue their operations during the
repair of a failed stage. If all the other

stages stop their operaticns during the re-

pair of a failed stage, equation(2.1) under-
states the system availability. Seedetailsin
Fox and Zerbe[3].

3. Sclution Procedure

In the previous section, the problem is
formulated as a NLIP problem. To solve a
NLIFP problem by the Lawler-Bell(LB)
algorithm, all the wvariables must be
expanded to binary ones. To obviate this
problem, Sasaki et al.[9] proposed the new
Lawler-Bell(NLB) algorithm, which
allows integer variables. Qur problem can
be solved by the LB or NLB algorithm, but
the optimal solution can be 6btained_more
efficiently by exploiting the special pro-
perty of the problem. '

3-1. Preliminaries

Consider any n-component vector V=
vy, V2,-++,¥n), Where v, <v;<v;, and all the

vy, V), v; are nonnegative integers.

Definition 1: Numerical Ordering
The numerical ordering, N{V), of a
vector V is defined as the following nume-

rical value:
N(V)=EL, v,(v+1) where v=max{Vv}.
N(V) can be interpreted as a size of V. V

is defined larger in the numerical ordering
than V', if and only if N{V)>N{V’).

Proposition 1: N(V)=N(V’) if and only if

v;=v; for all j=1, 2,--n, where V'=(v',,
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V2000,V o) VA= (i, Vi, Vioa, Vegeee V),
Definition 2: Vector Partial i
or Partial Ordering Remark : If V=V,_.,, V* cannot be

V is defined larger in the vector partial
ordering than V’(; V>=V’} if and only if v,
=v'; for all j=1, 2,--- n. Similarly, V<V’ if
and only if v;<v’; for all j=1, 2,---n.

Proposition 20 If a function, f(V), is
moenotone nondecreasing in each of the
variables v,, v;,--,v,, V=V implies f(V) =
(V).

Definition 3: For any given vector V,

three vectors V*, V*, and V** are defined

as:

V*=max{V’' | N(VI<N(V), V XV},

NV

vV =min{ V" | N(V*)< N{V")},
N{V'}

V**=max{V" | N(VI<N{V)},
LA

where “X 7" is the negation of “<”,
Suppose that all V's are listed in nume-

rical descending order, i.e.,

\"Fm ax = (Vl s Voo 'svn)s

e

V“mln = {El » ¥z, vYn)-

Then, V* is the first vector following V
in the numerical ordering that has the
property V*XV; V7 is the vector immedia-
tely before V*; and V** immediately follo-
ws V. V* V¥, V++ gre obtained as follows.

Generation of V*:  find the minimum i
that satisfies v, v;. If i=n, or v;=v;, for all
=1, then V* cannot be defined. Otherwise,
find the minimum i’ that satisfies i">1 and

v; *vi . Then,

defined since there exists no such i that

satisfies v, xv,.

Remark 2: If V=V, V*

defined since there exists no such i’ that

cannot be

satisfies v, v,

Generation of V*: [f V=V, then V*=
V. Otherwise, find the minimum i that
satisfies v,=v,. Then,

Vr={Vi,--.¥i, Vier, Vo)

Generation of V**: Find the minimum i

that satisfies visv,. Then,

V++=("Tl)“')v1-1t Vi -1 + VH-lv”':vn)‘

Remark 3: I V=V,,.. V** cannot be

defined since there exists no such i that
satisfies vi¥v,.

Proposition 3: N{VHi =< N{V)=< N{V)

implies Vr=V'<V.

Definition 4: V A V'=(v, A ¥V, Vo Vs,

Ve V), where “A means minimum.

Definition 5: V7 V' ={v,7 v}, V2% V5,

VRV V), where “7 means maximum.

- Propositions 1, 2 and 3 are the same as in
Sasaki et. al.[9].

3-2. Problem

Let us consider the following NLIP

problem.
Maximize f,(X, Y)

subject to
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fn(X,Y)—ftz(X,Y)faO{i: 1.2,--m) --- (3.2)
XY £ 0, --oeevevenmmmmemmmmeeninins - (3.3)

where X =(X,, Xz, Xn), Y =01, ¥2.".¥n),
0={(0, 0,--0), and X;<x;<X;, y,<V;<¥;,
and all the x;, x;, X;, ¥;, V3, ¥; are nonnega-
tive integers; and restrict all the functions
fo, f1, fi:(; i=1, 2,---m) to be mocnotone
nondecreasing in each of the variables x,,

o Xny Y107 ¥as

3-3. Algorithm

In the following proposed algorithm, (3.3)
is not considered explicitly as a set of
constraints, but the enumeration of possi-
ble solutions is made so as to satisfy(3.3).
Thus, the toial number of enumerated
possible solutions and the number of cons-
traints required to test feasibility for each
enumerated possible solution are smaller
than those of the NLB algorithm. An
optimal solution might be obtained by
examining each of the possible solutions in
the order of numerical ordering, beginning
with(Xmax A Ymax, Ymax) and ending
with(Xmin, Xmin¥ Ymun). However, this
process can be considerably shortened by
invoking certain rules, which are stated
below.

Let (X, Y) denote the pair of vectors that
is currently being examined and (X, ¥)
denote the optimal pair in the pairs of

vectors that have already been examined.

Substitute (){maxA Ymax,
Y ma) into both (X, ¥) and (Xmax, Ymax), and
set X=¥¢=0.

Initialization.

Step 1. If £.(X, V)= f,(X, ¥), skip to (X*,
Y) and repeat step 1. Otherwise, go to step
2.

Step 2. If f,(X*, Y)—f.(X, Y)>0 for
some i, skip to (X*, Y) and go to step L.
Otherwise, go to setp 3.

Step 3. If £, (X, Y)—f,(X, Y)=<0 for all i,
(X, Y) is substituted for (X, ¥} and skip to
(X*,Y). Otherwise, skip to (X**, Y}). In both

cases, go to step 1.

In steps 1, 2, and 3, if X* or X** cannot
be defined, go to step 4.

Step 4. Substitute (Y*+, Y**) into (X, Y).
If Y<3¥, skip to (Y*, Y*), and repeat this
test. Otherwise, change Xmax to Y and go to

step 1.

The algorithm terminates when Y* or
Y+* cannot be defined.

The flowchart and justification of the
algorithm are given in Appendices Al and

A2, respectively,

4. Numerical Example

In order to illustrate the proposed algor-

ithm, let us consider the following case:

(Ca1, €1z, o, Coz)= (10, 10, 20, 60),
(511, B2, Sz1, S221=1(0, 0, 6, 2),

(r;, T)= (0.5, 1),

(C, 5)=(280, 20).

Substituting these values into (2.1)~(2.4)
vields the following NLIP problem:
Maximize 2L, Ai(x;, v3)

subject to
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10x,+410x,+ 20y, + 60y, <280 <+ ------ 4.2)
6142y, <20 -eeveeres (4.3)

K <y, e (4.4)

Ny =< Vg, trrTttreer {4 5)

where x,, X,, ¥;, ¥: are nonnegative inte-
gers, and (4.1) is given by equation(l).
Noting that x;, v;(; j=1, 2) are integers
satisfying(4.2) and (4.3), we might obtain x;,

y; as follows:

X, ={280/10] =28

X, =[280/10] =28

y1=[min{280,/20, 20/6}]=[20/6]=3
v>={min{280/60, 20/2}] =[280/60] =4,

where [x] is the largest integer not greater
than x. Thus,

Xmax={x1, X»)=(28, 28)

Ymax= (1, va)}=(3, 4).
and the algorithm begins with (X,
Ymae Yma =03, 4, 3, ). Xoun=(1, 1), Yiuin=
(1, 1) so as not to make the steady-state
availability zero.

The optimization procedure is summar-

ized in the following table.

The algorithm for the numerical exam-
ple problem terminates at 10-th iteration,
and the optimal solution is X =(x,=2, x,=
3, Y=(v;=2, v2=3); x;, and y; are the
number of repair channels and total units
at j-th stage, respectively), and the corre-
sponding system steady—siate availability
is 0.87. Note that if the same problem is
solved by NLB algorithm, 23 total itera-
tions will be required, which is above two

times than that of the proposed algorithm.
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START

Y] — Hmax™ Ymax, Tmax!
Heax, Ymax] — Kmaxd Ymax, Ymax!
(X, ¥1 — 10, O

1
¥
( FolX, Y1 >Hol%, 17 )?
yes l
FLatXt, YI—1,0, Yi<O? ne
{i=1,2,---,m}
ves l
no FalX, Yi—f 1% Yi=0 ?
li=1,2,---.mi
yes l

(R, ¥l « X, Y

Is X*+ defined ?\ { - i 7)
Q / no no\ Is X deflned !
Yes Yes
no
1 Is Y** defined ?
—1 X, Y] «— [X**, Y] Y] o= Y+, ¥+ X, ¥} « (X* Y}
xmﬂx — Y

Is Y™ defined ?

X, Y) — (Y*, Y%

STOP
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Justification of Step 3:

Since (X, Y) passed step 1 without skip-
ping to (X*, Y), f.(X, Y)>1, (X, ¥). Thus if
(X, Y) is a feasible solution, i.e.,

f.(X, V—1(X, Y)<0 for all i,

(X, Y) is substituted (X, ¥) and skip to (X*,
Y) by the same argument as in the jus-
tification of step 1. Otherwise, we should
consider (X**, Y), which is the first vector

following (X, Y) in the numerical ordering.

Justification of Step 4:

Since (X, Y) is replaced by (Y**, Y**),
X =Y. Thus Y<X implies X=Y<X<¥.
Then it follows, from proposition 2 f(X, Y}
<f(X, ¥) and we can skip to (Y*, Y*) by
the same argument as in the justificaiton
of step 1. Otherwise, Xunax is changed to Y
in order to make the remaining enumerati-
on satisfy a set of constraints (3.3) and

continue the enumeration process.



