Journal of the Korean Institute
of Industrial Engineers
Vol. 15, No. 2, Dec., 1989

A Comparison of Software Reliability Models?

Chi-Hyuck Jun*

ST Eglo] AFA 239 nlwo) A G

A A

=]+
=

Abstract

A general software reliability model is developed, which includes the Jelinski

—-Moranda model, the Goel-Okumoto model, the Shanthikumar model and the Ross

model as special cases. In each of above models estimators of the software failure

rate and the number of remaining errors are presented and compared in terms of

the expected absolute error loss and the expected squared error loss by a Monte

Carlo simulation.

1. Introduction

The importance of quality assurance of
software and software reliability has been
recognized recently as computer and soft-
ware industries grow. In accordance with
this, many software reliability models are
developed to predict software performance.
See Kim[3], Musa, Iannino and Okumoto
[5], and Shanthikumar[8] for a review of

software reliability models. In most studies

software failure rate and/or the number of
remaining errors are usually considered as
performance measures. Therefore the study
on software reliability is reduced to the
estimation of these performance measures.
However, ther are few attempt to compare
these models with each other by inves
tigating behavior of the estimating measur-
es. This is important in practice where we
should decide which model to choose.

In this paper we present a general

% Department of Industrial Engineering Phang Institute of Science and Technology
t This work was supported by KOSEF Grant No. 883-0915-012-1.

66

Y ERTARIE

software reliability model which inclades
some well-known models such as the Jelin-
ski-Moranda model and the Goel-Okumo-
to model, and derive the software failure
rate and the number of remaining erros as
perfarmance measures in each model,
Then we perform a Monte Carlo simul-
ation to obtain estimates of these measures

and compare those existing models.

2. The Model

Suppose that a software under develop-
ment initially contains m unknown number
of errors and that error 1 will cause failures
independently of other errors in accordance
with a nonhomogeneous Poisson process
with intensity function A,(s), i=1, 2,--,m,
Suppose also that when a failure occurs, the
error causing that failure will be identified
and it will be removed instantly. That is,
one error at a time will be debugged. We are
interested in estimating the (revised) soft-
ware failure rate and the number of rema-
ining erros after testing the software for t
time period.

Let us define for i=1, 2.---,m,

Lty =1 if error i has not caused a
failure by timet
=0 otherwise.

Then the software failure rate at time t,

Ki(t), is given by
K{®=22, A4t L),

and the number of remaining errors at time

t, U(t), can be expressed by

U==2Z, L(T).
Note that the expectations of K(t) and U(t}

are evaluated, respectively, by

E[K(t)] ==, A(t) E[L{t)]
=Z2, A(t) exp(-Gi(t))

and
E[UM)] =31, exp(-Gi{t)),

where for i=1,---,m,
G1(t)=f b Ag(x)dx.

If N{t) is defined as the number of erros
detected by time t with N(0)=0, then {IN{t), t
=0} is a counting process and its expectati-

on is given by

E[N(t)] Zm“ziE[Ii{t)]
=m— E‘EXP(—Gl(t}). 2

The probability distribution function of
N(t), P.(t)=Pr{(N(t)=n!, can be obtained
from the corresponding forward Kolmogo-
rov equations., If we denote failure rates of
the detected error by A, (), At} when
N{t)=n, and software failure rate by k,(t),
which is defined as

ka(t) =EfK(t) | N{t)=n]
=EF AML—Z1 AL, coeereeennns (4)

then we have the following differential

equations:
ﬂ}t{_ﬂ_: —E1, L) Po(t)
dP:ir:E(t) =K (DPn {(D—ka{DP,(t), l<n<m,

with the boundary conditions P,{0}=0,n=1
and Py{0}=1.

B4, B2 5. 1989, 12

axee] AN wHs] vmd By I 67

Let X, be the time between failures (j-1)
and j, and S, be the time to the j-th failure,
that is,

Sj = Sj—I + XJ‘

:Eij=l Xiy

with S¢=0. Then the joint probability densi-
ty function of S,, S, --.8,, f(s;,---,34), can be
obtained by

f(s1, - ,80)=1I ?al ki_;(s)) exp{—(H,_.(sj)—

L O T) O T T RIS (6)
where
H,(s)= [ki{x)dx.
When A, (t)=-- = An(t)= ${t), cur model

is reduced to the Shanthikumar model{7].
Shanthikumar also shows that when (t) =
ab exp(-bt) with parameters a and b, it is
equivalent to the Goel-Okumoto model as
m — o, & - } ma — a, and ma* — 0
for all k> 1. Goel and Okumoto[1] consid-
ers {N(t), £=0} as a nonhomogeneous
Poisson process with intensity function of
pg)y—ab exp{-bt). It is clear that when
$ity=A1, we have the Jelinski-Meranda
model. If we assume that A, (t}=4,, i=1,---,
m, then we will have the Ross model[6].
In this paper we are interested in esti-
mating the software failure rate given n
failures by time t, that is, k.(f) of Eq.(4),
and the number of remaining errors at

time t, un(t), which is defined by

un(ty =E[U(t) | N()=n]

3. Estimators of Interest

in Existing Models

3-1. lJelinski-Moranda Model

This model is introduced by Jelinski and
Moranda[2], which is one of the earliest
software reliability models. They assume
that each error has the identical failure
rate, that is, 4,(t)=--= Au(t)= 4. Therefore
the conditional expectation of K(i) given
N{t)=n in Eq.(4) is reduced to

k() ={m—n)i.

Solving differential equations in Eq.{5} for
this medel, we can show that the distributi-

on of N(t) is binomial:
m _AtAn fo— Aym—n
Pn(t)=(?)(l—e ¥ (e ™o, 0<n=<m.

Noting that H,(s)=(m-j)As in this model
and 5;-5,_ ,=X;, from Eq.(6) the log-likeli-
hood function for m and A given data x,, -,

x, of n inter-failure times is
L(m: A | Xl,"',Xn):E;ll {1n{(m‘_j+1)l)
—(m—j+ DA}

Therefore the maximum likelihood esti-
mates(MLE) of m and A will be obtained by

solution of the following fwo equations;

Sl /m—j+1)—2 A% =0 e (10a)
and
n/A—3L, —jrl)x,=0. «eeeeeee (10b)

Given the MLE of m and A, m and i, the

software failure rate, k,(t}, and the rema-

68 Ay

- 5

ining number of errors at time £, u,(t}, can
be estimated by &y and 7y, respectively,

as follows when N{t)=n;

Sy =TI —N)A&, +oeverrrnnerommasimmmraniinae 11
and
FIMTTI—IL, teerrrssasrnnnrssmmmnnnsamessorias (12)

3-2. Moranda Model

Moranda[4] modified the Jelinski
-Moranda model by introducing a geome-
trically decreasing hazard function. That
is, he assumed the software failure rate

given N{t)=n as follows;

where D and r are two model parameters
to be estimated. Note that Eq.(13) is not a
special case of Eq.(4) except n=0. But com-
paring Eq.(4) and Eq.{13) when n=90, we
notice that D can be regarded as the initial
software failure rate.

Since H;(t}=Dr't for this model, the log
-likelihood function of D and r given data

Xi1,%.Xn 18 reduced from Eq.(6) to
LD, r | x,,x0)=2 o, {In(Dr-)—Dr'"'x;},

and the MLE of D and r are solution of two
equations shown below:

n/D—E‘.j"=l ri-ix;=0
and

= —1—DEL, (=10 ix;=0. ---- (14b)

If D and r denote the MLE of D and 1,

respectively, then the estimate of the soft-

ware failure rate at time t given N{t)=n is

obtained by

But an estimate of the number of remaining
errors is not available since the initial error

content, m, can not be estimated directly.
3-3. Shanthikumar Model

Shanthikumar[7] developed a Markov
process model which includes the Jelinski
-Moranda model and the Goel-Okumoto
model as special cases. He assumed that A,
(t)=---= Am(t)= $(t) and he chose $(t)=ab
exp(-bt). Therefore the software failure

rate at time t given N{t)=n will be

K ()=(m—n)ab exp(—bt). -ccereeeree- (16)

He showed by solving Eq.({5) that the distri-

bution of N(t) is binomial given below:

P ()= () (1—exp(—G(T))"

{exp(—GtH™?, 0=<n=m,

where G(t)= [; ¢ (x)dx=a(l-e™™).

From Eq.(6) with H;{t)=(m-jla(l
-exp(-bt), the log-likelihood function of m,
a and b given data s;,--,5; of n software

failure times will be

L(m’ a, b | S1477, Sn]
=S " In(m—j+1)+n In(ab)~b 27,5,
— 27 (m—j+ Daiexp{—bs;..)—exp{—bs)}.

Hence the MLE of parameters m, a, and b
will be obtained by solution to the following

three equations:

E1SHE, 52 B, 1989 12

Fxegs] A4 7o) vlwed BY AF 69

n/a—% ., (n—j+1){exp(—bs;.;}
—expl(—bs)}=0,

n/b—2 s,—= (m—j+ Lla{s; exp(—bs))
— 81 exp{_bsj_l}}:{), {17b}

and

T 1/ (m—i+1)—ad 1—exp(—bsg)=0.

The quantities of ku(t} and u,{t) can be

estimated, respectively, by

&)= (m—n)ab exp(—bt) --errrirereee (18)
and
H(}=T— 11, crmmeneneerrenromnnunnaens S (19)

where m, @ and & are the MLE of m, &« and

b, respectively.

3-4. Goel-Okumoto Model

Goel and Okumoto[1] assume that the
process {N{t), t=0} is 2 nonhomogeneous
Poisson process(NHPP) with the intensity

function u{t) as follows:
u(ty=abe™,

where a and b are unknown parameters.
Therefore the distribution of N{t) is Poi-
sson with mean m(t)=a(l-exp(-bt}), that is,

{m{)" exp(—mlt))
nt

Pa(t)= , n=0,L2-
The quantity of our interest will also be

k, (t} = abe—b“ (20)

Notice that the software fallure rate is

unaltered by error occurrences. We can

regard parameters a and b as the initial
error content and the faiure rate of each
error, respectively. when m=a and A,({s)=
b for all i, ETK(t}] of Eq.{1} is same as kq{t)
in this model.

From Eq.6) with H;(t)=a(l-exp(-bt))},
the log-iikelihcod function of a and b
given data s, -8, of n software failure
times is given by

L{a,b| sy, 8e)=n In(a)+n 1n(b)

—a(l—exp(—bs.))—Db Z;s;

and the MLE of parameters a and b can be

calculated from the two equations given

below:
n/a=1—exp(—Dsy) e (21a)
n/b=37=, 8+ asa exp{—hsy), +meerr (21b)

Therefore the estimates for the software
failure rate and the number of remaining

errors at time t will be

Seo(t) =3b exp(—bHt)
ﬂcoza—n, (23}

where a and b are MLE of a and b, res-

pectively.
3-5. Ross Model

Ross{6] assumed that errors have differ-
ent failure rates from each other and that
each rate is unchanged over time, that is, 4
(s)= A, i=1,++,m. If we assume that the fail-
ure rate of an error becomes known once
the error has been detected and let A, -+.A,
be failure rates of detected errors when

N{t)=n by time t, his estimator of the soft-

70 Hay

RN IR E

ware failure rate at time t is given by

Ay exp{—Ait)

— TNy
%Hb= 2 1—exp{—At)

Notice that
E[6,(0]=E[K()]=S7, d,e ™,

and therefore §,{t) is an estimator of E

[K(t)] actually.
In this model k.(t) of Eq.(4) is reduced to

ko (=27, 4,— 2 Ay,

which can also be estimated by &,(t). He also
suggested that A;, i=1,---n can be estimated
by 1/S,.. Therefore the software fatlure rate
ai time t can be estimated by

exp(—ts)

6R{t) :2:1=l sl(l_exp(—t/sl))]

wheres;,i=1,--,naredata of n failure times.
The estimator of his type for the number
of remaining errors at time t can be given

by
N exp(—Ait)
7 (V) =Z27 I—exp(—Ait) -

Note that E[7 ()] =E[U{t)] = 3", exp(-A4,
t). Therefore the number of remaining
errors at time t when the data s,,---,s, are
available can be estimated by

—sn _exp(—t/s)
m(t) —21=1 l_—_m' (25)

4. A Numerical Example

We again analyze the NTDS(Naval Tac-
tical Data System) data which has been

considered by Jelinski and Moranda[2] and
by Goel and Okumoto[1]. We fit this soft-
ware failure data to each model in Sec, 3,
estimate relevant parameters, and compare
models by computing the software failure

rate and the number of remaining errors.

The NTDS data is shown in Table 1.

Table 1. NTDS Software Failure Datg

failurg no. inter-failure time to jth
i times failure
X] (day) Sj {day)
1 9 9
2, 12 21
3 11 32
4 4 38
5 7 43
6 2 45
7 5 50
B 8 58
g 5 63
10 7 70
1" 1 T
12 6 v
13 1 78
14 9 87
15 4 9
16 1 g2
17 3 as
18 3 98
19 & 104
20 1 105
21 11 118
22 33 149
23 7 1586
24 N 247
25 2 243
26 1 250

Eis4e, 2 5%, 1989 12

AT Ege] 424 2ee] vlwe] A} AT 71

We obtain parameters estimates of each
moadel by solving simultaneous eguations
numerically and compute quantities of our
interest after the 26th failure has been de-
tected (t=250). We use the ZSCNT routine
of IMSL[9] in a program with FORTRAN
language. Table 2 summarizes the result.

We observe from Table 2 that the esti-
mated software failure rate is largest in
the Moranda model and the smallest in the
Ross model and that the estimated number
of remaining errors is largest in the Goel
-Okumoto model and the smallest in the
Ross model. We also notice that the Jelin-
ski-Moranda model and the Shanthikumar
model estimate both measures almost
identicaily. Note that in the NTDS data
eight more errors were detected after the
26th failure. Hence in this example the
Goel-Okumoto model precisely estimates

the number of remaining errors.

Table 2. Estimation Results by Models

5. A Monte Carlo Simulation

One approach to investigating whether
one estimator is better than the other is the
decision-theoretic one with some error loss,
which evaluates and compared the risk of
each estimator. Here we will consider the
two kinds of error loss functions, that is, the
absolute error loss and the sgared error
loss. Hence we want to evaluate the exp-
ected absolute error R,(8) and the expected
squared error R.($) associated with the
estimator of the software failure rate &.
Similarly we want R;{»} and R.(#) associa-
ted with the estimator of number of rema-
ining failure rate #. These quantities are

expressed by

Ri(8)=E[] 6—ka(0) |]
R; () =E[{ &—ka(t))*]

Model Parlameters failure no. of remaining

estimates rate {8) errors {n}
Jetinski-Moranda m = 31,22

1 = 0.00685 0.0357 5.22
Moranda D = 0.2020

ro= 0.95471 0.0605 -
Shanthikumar m = 31.40

a = 13.71

b = 0.00051 0.0335 5.40
Goel-Okumota o = 33.89

b = 0.00579 0.0463 7.99

Ross

C.0199 3.10¢

72 ARy

ERTHOE

Ri(n)=E[| #—ua(t) |] -ooovrrrereerees (28)
R:(z) =E[(z—un(t))?],

where n is considered as a random
quantity. But it is almost impossible to
evaluate them analytically. Therefore we

will pursue this by a computer simulation.

5-1. Simulation Procedure

In simulation we assume that error i
causes a failure according to a Poisson
process with rate A, i=1,---,m(4;’s may be
equal) independently with other errors.
Qur procedure is as follows:

Step 1. Choose m and A;’s.

Step 2. Generate the time to failure
caused by each error and obtain n, the
number of errors detected by time t. Note
that the time to failure caused by erroriis
exponentially distributed with mean 1/4;.
Then we obtain the data s’s by sorting n
failure times in ascending order. Next we
obtain k,(t) and u.(t}, and calculate the
estimate of the software failure rate & and
the estimated remaining erros » for each
model. Then we compute | kof{t)-& |, (Kalt)
-6)%, | ualt)-7 | and {un{t)-#)"

Step 3. Repeat Step 2 N times and cbtain
an estimate of R, (& of Eq.(26) by ave-
raging | k.(t}-¢ | over N and an estimate
of R:(8) of Eq.(27) by averaging (ka(t)-¢&)?
over N. Qbtain estimates of R,(») and R,
(») analogousiy.

Without loss of generality we assume
that t=1 in this sitnulation. Also in Step 3,

we choose N=100. In step 2, we solve non-

linear simultaneous equations by using the
ZSCNT routine of IMSL which sclves equa-
tions iterativley until some conditions are
met. Due to the computation time we limit
the number of iteration to 1,000 and set
fnorm to 0.0001, which is defined by
fnorm= =T, f}(X),
where {,{X)’s are equations to be solved and

X is a vector of unknowns.

5-2. Simulation Results

We consider six cases(case [to case VI)
with different number of errors{m) and
failure rates(A,'s) assumed. Case [assu-
mes m=10 and the equal failure rates of
errors which are set to 0.5 and the Case]I
assumes m=10 and failure rates of errors
equally as 1.0. Case Il and IV assume m=
20 and equal failure rates .5 and 1.0, res-
pectivley. In Case V and VI, m=20 is
chosen but failure rates are assumed diffe-
rently among errors, that is, they are cho-
sen randomly from the interval{0.1, 1.0)
and (0.1, 2.0), respectively. Table 3 sum-
marizes the simulation results of all six
cases.

Note that for each case 100 replications
were made but some of them were deleted
in calculating estimates since they failed in
convergence during solving nonlinear
simultaneous equations. Particularly in the
Shanthikumar model convergence problem
frequently occurs. It should be mentioned
that this simulation is quite time-consu-
ming. Simulation of one case requires
about 2 hours in CPU time at the VAX

#1548, 52 2 5. 1989. 12 fzEofo] N BHe vlEe] T AT

Table 3. Summary of Simulation Resulits

Average Estimates Values and Expected Error Losses

Case i;it;.‘:lror::'and ::?ér: oc;e?;cted
No. failure rates and true values J-M Shanthi G-M Moranda Ross
i m=10 n =399
3= 0.5 K (t)=3.01 E{é] = 4.24 3.06 423 5.1 1.03
R1(&) « 1.83 1.87 1.8 370 .02
R2(8) = 5.74 4,85 524 3402 5.30
u, (t)=6.01 Efn] = 1329 3371 1713 - 0.1
RM)= &M 32,2t 1.32 - 5.30
R2(n} = 130.26 2359,27 218.92 - 31.27
I} m=10 n =618
A= 10O k,(t)=3.82 E(§] = 5.55 2.88 581 6.55 1.41
R1{6) = 2.75 2,08 247 438 247
~ R2(§} 12.55 8,91 9.06 3729 8.01
U, {th=3.82 E[n] = 11,30 12,38 15.26 - 0.93
Rin) = 8.47 11.80 11.53 -« 2.89
R2(n) = 143.71 691,65 185.42 - 11.10
| m=20 n =7.58
A= 0.5 k(t}=6.21 E[5}] = 7.37 5.24 .24 10,24 1.97
RI{§) = 2.42 2.54 223 580 429
R2{6) = 801 9.25 B.38 B7.01 21.22
v (t)=12.42 E(n] = 2578 3129 30.05 - 135
RI(R} = 14,87 2876 1820 - 1ta2
R2(n} = 382,28 2040.63 §24.20 - 130.30
kY m=20 n =12.37
x=10 k()= 7.63 E[§] = 976 615 9.99 9.69 2.80
R1{§) = 3.51 3.23 3.24 4.31 4.9
R2(8) < 19.80 19.17 16,70 29.04 29.56
u, (t)=7.63 E[n] = 19.47 608 2231 - 1.84
RHn) = 1323 478 14,90 - 5.81
R2(N) = 358.17 66.58 345,65 - 38.90
v m=20 n =9.69
r={0a, 1.0} kit)=6.22 £€f§] = 899 558 8.69 10,86 2.48
R1{8} = 3.58 2.58 3,43 6.18 3.78
R2(6) = 19,21 10.83 16.65 72.83 19.02
u, {)=10.31 Eln] = 25.24 T.43 28.26 - 1.67
Ri{n}= 1573 7.20 1854 - B.64
R2(n} = 47500 134,32 556.81 - 82,29
v m=20 nooo=12.91]
a=(0.1, 2.0) K (t}=6.67 E[§] = 9.62 5.42 9.70 9.60 2.77
R1(&) = 470 3.21 4,46 476 4.05
R2(8) = 30,38 16.91 2r.21 34.458 23.85
u(t) =7.09 Efn] = 18.04 4.56 19.46 - 1,78
Ri{n) = 13.13 3.87 13.64 - 5.32

R2{r) = 338.33 23.40 317.59 - 34.58

74 A2y

-3 A Wy 5

-8800.

We notice in Table 3 that almost all
models give quite good estimates for the
software failure rate but not good ones for
the remaining number of errors. The Shan-
thikumar model and the Ross model tend
to underestimate the software failure rate
and the rest models tend to overestimate it.
When failure rates of errors are assumed
as different with each other, the Shan-
thikumar model surprisingly shows good
performance on estimating the software
failure rate and the remaining number of
errors. However the Shanthikumar model
gives very poor results on estimating the
remaining number of erros when
equal{particularly small) failure rates of
errors are assumed. We can also see that
the Jelinksi-Moranda model and the Goel
-Okumoto model perform almost equally
although the Goel-Okumotce model esti-
mates the software failure rate slightly
better than the Jelinski-Moranda model
does and the Jelinski-Moranda model
shows slight better performance on esti-
mating the number of remaining errors.
The Ross model has an advantage of not
requiring nonlinear equations to calculate
estimates but unfortunately it severely
underestimates both performance measur-
es. Some cure should be needed in further

research.

6. Concluding Remarks

We present a general software

reliability model which includes existing
models such as the Jelinski-Moranda
model, the Goel-Okumoto model, the Shan.
thikumar model, and the Ross model. In
addition, some other models which assume
the software failure rate as special cases of
Eq.(4) can be included in model. Further-
more the joint probability density function
of 5, S.,--+,5, given in Eq.{6} will be valid
even when the software failure rate k.{t)
cannot be written by Eq.(4).

Simulation results presented here are
not quite extensive but they show that
there is no dominating model in estimating
the software failure rate and the number
of remaining errors. Particularly a further
study should be necessary in estimation of

the number of remaining errors.

References

1. Goel, A.L. and K. Okumoto, “Time
-Dependent Error-Detection Rate
Model for Software Reliability and
Other Performance Measures”, [EEE
Transactions on Relighility, Vol. R-28,
206-211, 1979,

2. Jelinski, Z. and P. Moranda, “Software
Reliability Research”, in W. Frei-
berger(ed.}, Statistical Computer Pevfor-
mance Evaluation, Academic Press, 465
-484, 1972,

3. Kim, Y.H., “Software Reliability: A
State-of-the-Art Survey”, Journal of
the Korean Institute of Industrial Engi.
neers, Vol. 13, No. 1, 39-52, 1987.

WE 15, 52 3%, 1989 12

azEge] 434 ¥ vjmd FY AT 75

4. Moranda, P.B., “Event-Altered Rate

Model for General Reliability Analysis”,
IEEE Transactions on Reliability, Vol. R
-28, 376-381, 1979.

. Musa,].D., A. Iannino, and K. Okumoto,
Software Reliability-Measuvement,
Prediction. Application, McGraw-Hill
Book Co., New York, 1987.

. Ross, S.M., “Statistical Estimation of
IEEE
actions on Software Engineering, Vol, SE

Software Reliability”, Trans-

=1

. Shanthikumar,

-11, 479-483, 1985.

Shanthikumar, J.G., “A General Softwar-
e Reliability Model for Performance
Prediction”, Microelectronics and Relia-
bility, Vol. 21, 671-682, 1981.

1.G.,
Reliability Models: A Review”, Micro-
electronics and Reliability, Vol. 23, 903
-943, 1983.

“Software

. IMSL, Inc., IMSL Library-User’s

Manual, Vol. 4, 1984.

