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Development of Optimal Accelerated Life
Test Plans for Weibull Distribution Under
Intermittent Inspection”

Seo, Sun-Keun*

ABSTRACT

For Weibull distributed lifetimes, this paper presents asymptotically optimal accelerated life
test plans for practical applications under intermittent inspection and type-—1 censoring,
Computational results show that the asymptotic variance of a low quantile at the design stress
as optimal criterion is insensitive to the number of inspections at overstress levels,

Sensitivity analyses indicate that optimal plans are robust enough to moderate departures of
estimated failure probabilities at the design and high stresses as input parameters to plan
accelerated life tests from their true values,

Monte Carlo simulation for small sample study on optimal accelerated life test plans
developed by the asymptotic maximum likelihood theory is conducted, Simulation results

suggest that optimal plans are satisfactory for sample size in practice,

1. Introduction

This paper considers an optimal design of accelerated life test(ALT) plans for Weibull

distributed lifetimes on the assumption of intermittent inspection and type—I censoring,
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During the three preceding decades, Weibull distribution is probably the most popular model
in the statistical analysis of failure time data(e, g, see Lawless(1983)). This model provides a
good description of many types of lifetimes, since its hazard function could be monotone
decreasing, increasing or constant on the proper choice of the parameter values,

Accelerated life tests quickly furnish information about the life distribution at the design :use
or normal) stress of high reliable products and materials, But further reduction in testing efforts
and administrative advantages may by achieved by periodic inspection (a regular interval} or
intermittent inspection in which test items are examined at certain points in time rather than
continuous inspection,

Also, some failure data may be obtained only by repeated inspections of the products, For
example, when an unit can not be monitored continuously such a cracked part inside machine
as turbin wheel, the exact failure times can not be observed,

The resulting information called “grouped” or “interval” data by above inspection scheme
consists of the number of failures in each interval and the number of units that survive until the
censoring time,

Much works on the optimal ALT plans have been carried out under the assumption of
continuous inspection and have chosen levels of some stresses and allocations to satisfy specified
optimality criterion,

Developments in this area were contributed by Chernoff(1962), Little and Jebe(1969), Mann
(1972), Meeker and Nelson(1976), Nelson and Keilpinski(1975), Nelson and Meeker(1978).
Meeker(1984) and Meeker and Hahn(1985),

On the other hand, studies on statistical analysis of grouped data or design of the inspection
scheme have been largely concerned with univariate sample from a single lifetime distribution: by
Kulldorff (1961), Ehrenfeld(1962), Nelson(1977), Archer(1982) and Meeker(1986).

As exception, Choi(1987) presented optimal ALT plans for exponential life distribution under
equally spaced inspection scheme,

This paper provides ALT plans designed for widely applicable Weibull distribution by
combining these interesting and important aspects of life tests, namely acceleration and
intermittent inspection,

For type—1 censoring, the method of maximum likelihood estimation in its asymptotic set:ing
is the most universal and perhaps the only work instrument in hands of any applied statistician
and engineer,

The optimality criterion adopted to develop optimal ALT plans is the asymptotic mininium
variance of maximum likelihood estimator of a low quantile of the lifetime distribution at the
design stress,

The decision variables, i, e,, the low stress level, the proportion of test units to be allocated
to the low and high stress are derived and computed with respect to parameters involved,

Sensitivity analyses are performed to asses the effect of misspecifying the unknown
parameters on the optimal plans,

When dealing field data, there is a doubt whether sample size is large enough to provide a

- 90 -



reasonable accuracy of the asymptotic maximum likelihood theory and optimality of ALT plars,
A Monte Carlo study on the small and moderate sample properties of maximum likelihood
estimators for optimal ALT Plans is conducted and discussed,

2. The Model and Maximum Likelihood Estimation

The results in this article are based on the following assumption :
1) The lifetimes of test units are independently and identically distributed as Weibull, that is,
the probability density function of lifetime T is given by

f()y=6/60(t/@) ¢ 'exp {(—¢t/@)?} for {=0,8, § >0 (2.1)

2) The scale parameter is
O=exp(B+ B x) (2.2)

where x is the (transformed) stress level,
3) The shape parameter 5 dose not depend on the level of stress,

4) The design stress level x and high stress level x, are prespecified, while low stress level
x, is to be optimally determined,

5) n, n, units are tested independent of stress levels at the low and high stress simultaneously
until some censoring time(Type—I censoring),

6) Inspections are conducted only at specified points f, £y, -+, lixee =1, 2, K;> 2 and let
Lo=0 and ¢, g4+ =00,

Eq, (2, 2) is well known simple linear regression model such as the power rule model or
Arrhenius model at life stress relationship in ALT (see e, g, , Lawless(1982), Chapter 6 and Man
et al, (1974), Chapter 9).

If product life T has a Weibull distribution, Y =In 7 has a smallest extreme valie
distribution that the distribution function is written as

F(y)=1-exp [~exp{(y-—/1)/o}], — oo y{co 2.3

where ¢>0, ~co<u<©, ¢=1/8, y=In &

The number of test units allocated to x and x, are respectively given by
m=gN, m=Q1-a)N=N-n (2. 4)

where N is total number of test units preassigned, and r is to be optimally determined,



Define m,;=the number of units(at stress level x;) failed
in [t b)), 7512, K +1
P, =the probability of failure at stress level x;
in [t,,_, ), /=12, K,+1
Then the resulting grouped data {m;, i=1, 2, j=1, 2, K;+1} are used to estimate B,, B,
and ¢ and grouped data structure of intermittent inspection can be described as in Figure 1,

time
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Figure |. Grouped Data structure

A primary concern is to estimate the low ¢ th quantile, 3y, of extreme value distributon at the
design stress as follow,

vo=In ,=B+Bx+¢ In {~In(1—¢q)} (2.5)

Let B, B, and ¢ are maximum likelihood estimates of B,, B, and ¢ respectively, then
estimate of v,(J,) is

9,= Bo+Bx+oln{(—In(1—¢)} (2.6)

The problem of designing the optimal ALT plan under intermittent inspection can be stated as
given N, x, %, inspection schemes at x and % to determine nr and x, such that large sample
variance of 7, is minimized,

At each stress, the grouped data {m,;, =1, 2,--, K;+1} are multinomially distributed with
parameters #; and {Py, j=1, 2,---, K;+1},



The likelihood function is given by
2 2 Ki+)
L= QL':IZ (]1 n P (m”) ! (2.7)
Then the log-—likelihood function is

2
1(Bu. B, O'):gl lan‘

- é §+1 InP, (2.8)

where C is constant and
Pi;=exp {—exp(z, ;..) } —exp{—exp(z;) }, (2.9
2;=(y;—B—Bwx:) /o for i=1,2 and j=0,1,--, K, +1 (2.10)

The three partial derivatives of log—Ilikelihood function are

=3 E A - A P,

o1 1 2 Ki+a

a_B]*ZO 12=1j=x X omy; (Ai o1~ A /Py

a1 Ki41

%:J_lig P my; (Dyy ;00— D) /Py (2.11)

exp {z;—exp(z)}, 1=2,-, K;
where A, P {2, —exp( ], (2.12)
0 , 7=0,K;+1

Dz‘j: ’iinj (2.13)

when define B,=¢ temporarily, then the Fisher information matrix for the grouped data at
each stress level has the following form (See Rao(1973)).

ki :”"(f“(””)g, h=0,1,2 =12
%)
K
4= ._H _iBi,P_iBﬁ_ (2.14)
J=1 i



After some algebraric manipulation, I obtain
. Ki+1
fb'=0"? _21 (A s — APy
£

0= 5

S =x1b”

Ki+1
=0 X (A, 1—A) (D, ;10— D)/ Py

iz
FASEEASS

Ki+1

fy =072 ng (Diy ji— D) /Py (2.15)

The total Fisher information matrix for any plan with a sample of N independent
observations is given by

F= é:lF.:N( g‘;’+(1—7r)fg&f’)g.h:o. 1,2 (2. 16)

By taking inverse of F, the asymptotic covariance matrix is obtained by
V=F"! (2.17)

Newton— Raphson method or scoring method may be appropriate and convenient for deriving
maximum likelihood estimates of B,, B,and ¢, Burridge (1980) discussed conditions for
regression model with grouped data that log—likelihood is concave, Also, the existence and
uniqueness of maximum likelihood estimates for Weibull grouped data at the design stress was
given by Cheng and Chen(1988).

Further, the asymptotic variance of the estimator of the given ¢ th quantile at x is

Avar {§,(%)}=[1 % Ug] F~* [1 % Ug]’ where Ug=In{—-In(1—¢)} (2.18)

where Avar denotes the asymptotic variance, and is a function of ¢, B, B, ¢, n, N and
xio 170, 1, 2,



3. Optimal Plans and Computational Results

An optimal ALT plan provides the asymptotic best estimate of the quantile at the design
stress,

As a consequence in section 2, the optimal plan is to be determine optimal x, and 7 (x*, 7*)
for the given values of B,, B, ¢ and prespecified inspection scheme to minimize standardized

asymptotic variance as the follow,

Min [ %’Avar{yq(xo)‘r] = Virs G.1

X1, 7

subject to 0<x7<l, % <x<{x%

The constrained optimization problem can be avoided by simple transformation of variables to
unconstrained problem, i, e, , v =In{(x—x%)/(x—x)}and w=In{z/(1—x)} and solved by the
Powell’s conjugate direction method(1964),

To develop optimal ALT plans, we set 4, =t,=1., K,=K,=k, Further, the parameters are
standardized such that let #{.=1 and let range of new parameters for stress level [0, 1],

Under the above reparameterization, adjusted parameters(s, &, &) can be easily calculated

by orginal parameters(x, B,, B))
S=(x—%) /(X —%)
b= (n—x)B
bo=B,+Bx—In |, 3.2)

However, no generality is lost under the above standardization,

It is important that experimenters choose the inspection scheme for ALT plan, Though
equally spaced inspection times are common at the high and low stress and are widely accepted
by the ease of implementation, it is statistically inefficient in case of decreasing and constant
failure rate and additional estimation of ¢ to design ALT plans must be needed,

Therefore, I take a choice the equal probability inspection scheme that is reasonably
statistically efficient (Meeker(1986) gave guidelines for choosing statistically efficient inspection
times and discussed the inspection scheme and Hassanein(1972) gave optimum inspection times
with type -1 censoring for a particular criterion from Weibull data).

Inputs required to develop an optimal plan are “guess” values for &, & and ¢.

In actual experiments, the following defined quantities can be used instead of &, 5 and g by
information of product design, or engineering judgement of preliminary test because of the
convenience of estimation,

P,=probability that an unit fails in [0, f, ) at the design stress



= probability that an unit fails in [0, £.) at the high stress
Then the corresponding standardized intercept and standardized slope can be determined as

follows,

b/o=—In{-In(1— Ps)} +Int./ 0 (3.3)

b/o=—-In{—-In(1—P,)}~ b/o+Ini/o (3.4)

Accordingly to P, and P,, the probability that an unit will fail at s is given by

P,=1—exp|[ —exp{zpx(1—5) + S 222} (3.5

where zix={Int.—(bo+bs;)}/0 for 7=0,2 can be determined by Eqgs, (3.3) and (3, 4),
Hence inspection times {#;,, -, tix ; =1, 2}can be calculated by Eqs, (3,5)and (3,6).

v/ o=Int,;/o=({b+bs,)/o+In{~In(1—jP,/k)} (3.6)

where P,=F, and B, =P,

While inputs to design optimal ALT plans are only P, and P, under equal probability
inspection scheme, additional estimate of ¢ or 3 is needed to determine inspection times at
each stress level,

Partial listings of optimal ALT plans that are summarized by Tables 1--2 and these tables

provide for the combinations of

k=2, 3, 5, 10, oo

Fy=0.0001, 0,001, 0,01, 0,05, 0,1

P,=0.1, 0,25, 0,05 0.7, 0.9, 0,99

q=0,01, 0.1

subject to Py <ql{P, (3.7)

To limit the derived extrapolation incurred in implementation of ALT plans, Eq, (3.7)is
assigned,

The tabulations show standardized intercept and slope of location parameter (& /¢ and 4, 0).
optimal level of low stress(s;*), optimal proportion allocated to low stress(z*), standardized
asymptotic minimum variance(V,, ,) ratio of V, , to continuous inspection (V% »/Vi, ). und
probability of failure until ¢ at s (P,),



Table 1. Optimal ALT Plans for Weibull Grouped Data Under Equal Probability Inspection Scheme (g= 0, 01)

Po P bjo blo k s* r* V,, ratic® P P, P. &/oc bjo k st x* Vi, . ratio P
0000900 32108 16,7375 2 T248 5B 130.7TIT LIMG 3138 | L0010 5000 6.9073 -6.5407 2 6430 25 347117 L1350 L0649
00005900 9.2103 -10.7375 3 7250 7150 123.2560 1.0574 2137 | L0010 L5000 £.0073 -5.5407 3 6352 L7636 220.5429 1.0686 L0618
NG 9900 8.2103 107395 0 UT260 9284 119.4980 10252 2157} L0010 L5000 6.9073 -B.540T 5 B05 LOTAD 2134583 10323 L0600
0000 52105 -10.7375 16 LT2ET 7309 LIDL6008 13030 2172 | L0010 L5000 69075 -5.5407 10 L6276 L7818 200.6%67 1.0138 08¢
SO0 02103 107315 @ 7268 T4 UIBLE6IS 10000 2172 | L0010 5000 6.907% -6.5407 o 6251 LTRT0 206.7750 1.0000 0S80
0009000 92100 -10.0440 2 JTECE  L68TR I0LB0M 1M492 ATIZ ) 0010 L2500 6.9073 6614 2 L6096 L7267 4258115 1.1698 L0311
J00E 9000 9.2103 10,5443 3 44T 114 1961983 1LOB9S 0627 | GGT L3500 6.907Y -GL66H4 3 LR004  LTSIZ 4048491 10867 L0995
A00F 9000 9.2103 10,0443 5§ 1T T8 1892262 1.0316 L1580 | L0010 2800 6.9073 -D.6GI4 5 5049 L7651 388.7536 1.0435 0286
0P 9000 92100 -10.0443 10 TI9Y T 15767 LI LISE2 | OO0 2S00 69073 BLBGIA 10 LE914 LTI AMOTS1 16190 .0%8%
LO0T 9000 9,210 -10.0445 w0 JTIRY 7354 193.4289 10000 L1526 | L0010 L2500 £.907) -5.6614 o 58R4 7802 1725376 1.DOOD L0076
A0 7000 92103 -9.3359 2 JTR2E 6TTR M48.0181 LLI8TE L1113 | 000 L1000 £.907) -4.6569 2 LS00 L7000 8722240 1.2188 0129
D000 7000 9.2103 -9.3959 3 JT4EY 7036 319.5347 1.0306 L1054 | L0010 1000 £.%073 -4.B569 1 .5400 L7288 797.0350 1.1137 0123
SUCE7000 3.2100 -9.298% 5 7427 81 30B.6709 1.0431 L1018 | LOCIC L1000 £.907) -4.B5R0 5 5330 .75 TST.I73 1.0%80 L0119
0T 000 9.2108 -9.799 10 7408 L7264 2983175 10180 L0996 | 010 L1000 6.9073 -4.6569 10 5289 7561 TMLOT08 1.0%60 .0LI7
H00T 7000 92100 9.9 o P3R4 7TD26 293018 L0000 0980 | OOID L1000 B.9073 -4.6560 o 5251 L7651 715.6390 1.6000 0115
AR 5000 32100 -B.e438 2 TAB6 6679 BIR.6126 1.2101 L0723 | 0100 L3900 4.6001 -6.1273 2 4237 9% 995313 1209 L1961
A001 5000 6.2103 -B.8438 3 415 L6956 4G1.5312 11043 L0680 | L0100 L9900 4.6001 -6.1273 3 4454 ROBD 565945 11138 L4
AT 5600 32103 -3.8438 5 TR 7113 4BT.7861 1.0510 L0657 ! L0100 L9900 4.8001 -6.127% 5 4505 BIN6 34,6938 1.0559 1546
0015000 5.2000 -R.B408 10 7349 7206 454.8605 1.0220 0643 | L0100 L9900 4.6001 -6.127% 10 4679 L8184 335630 10215 1620
0005000 3,210 -8.8438 o 7329 7270 45,0875 1.0000 L0632 | L0100 9300 4.6001 -6.1273 m  4T31 216 32.8%52 L0000 L1667
Q00200 3205 7944 2 7020 6508 1090.1309 12390 L0335 | L0100 L9000 4.6001 -5.4M2 2 4513 8480 42,0730 1.0088 1108
0002600 5.2103 -7.9644 3 L7250 L6803 387.2476 1.1221 L0317 | L0100 9000 4.60001 -5.4042 3 4560 .12 417584 L.OISD L1129
D000 2500 92108 -7.644 5 LT208 697D 3337700 10613 L0306 1 L0100 L9000 4.6001 5.2 5 4588 8528 4LA0DY 10OV 1145
0002600 9.2103 T304 100 JTHBZ L7081 303.6803 10271 L0300 | L0I00 L9000 4.6001 -5.442 10 4602 8536 41.2063 1.0027 1159
00T 2500 9.210% -T044 w 7I1B%TIG9 99,8471 10000 L0295 | L0100 L9000 4.6001 -5.4M2 o 4600 L8541 41.004G 10000 .11%7
001060 32103 -6.9598 27033 6259 2451.6696 1.27%4 0133 . L0100 7000 4.6001 -4.7858 2 4212 8770 R4 LOOSO .07
00011000 9.2103 -6.3599 % 6970 6683 2196.4671 1.1426 0127 ; L0100 7000 4.6001 -4.7858 3 4221 8775 SN0 1.0028 0730
0011000 3.2103 -6.3595 5 6921 6772 2061.8967 1.0726 0123 ¢ L0100 (7000 4.6001 -4.7858 5 4227 778 532770 1.0013 L0732
0001000 32103 -6.3599 10 6892 6890 1984.8728 1.0325 .0120 L0100 7000 4.6001 -4.7858 10 4230 .BYT9 5.4 1.000S L0733
0001060 32108 -5.5530 o L6866 .GY9T 1922.3297 10000 LOU8 . 0100 L7000 4.6001 -4.7858 o 4232 L8780 532051 1.0000 .07
At 9900 8.9073 B4 2 8192 JTRTL TL20TO L0996 164 L0100 L5000 4.6001 -4.2336 2 3672 L8986 66.61Q 1.0012 L0464
0109900 5.9073 -B.4344 3 6281 7692 68,0276 L0505 LATTL | L0100 L5000 4.6000 -4.2336 3 L3675 .BO8T 66.5736 1.0007 0465
00109300 95,9070 -R.434 5 6301 772 66,2082 1.0227 .IB40 | L0100 .5000 4.6001 -4.2336 5 L3677 8088 66.5557 1.0003 D465
0109900 5.9073 -B.4344 10 6333 7784 652604 10078 L1886 | L0100 5000 4.6001 -4.2336 10 L3678 .B9SE 66,5429 1.0001 0466
0109500 59073 -8.4344 o B3B0 TR0 54,7965 10000 LIS100 | L0100 L5000 4.6001 -4.2336 m L3678 .B988 66530 1.0000 0466
Q010 .9000 5.9073 -7.7413 2 6548 JTSET 1030208 L.OS24 LM47L | L0100 L2500 46001 -3.3542 2 2205 9304 89.37%4 1.000L L0010
D010 9000 5.9073 -1MI3 3 6499 7718 97240 10370 L1420 | L0100 2500 4.6001 -3.3542 3 .2226 9394 89.3702 1.0001 .0210
QG100 .9006 5.9073 -7.MI3 5 p4T3 TTO% 967250 LUTGT L1394 | L0100 L2600 4.6001 -3.3642 5 2226 9304 89.3672 1.0000 0210
L0610 9000 59070 -3 10 6458 7840 957637 1.0060 L1379 | L0100 2500 4.6001 -3.354210 2227 .9304  89.3658 1.0000 L0210
00109000 5.9073 <7713 o G444 7368 95,1885 1.0000 L1366 | .0100 L2500 4.6001 -3.0842 w2207 U394 89,3649 1.0000 0210
00107000 5.9073 -1.0929 2 6548 L7497 150.4616 1.1120 L0889 | L0100 1000 4.8001 -2.3438 2 .0000 1.0000 100.0537 1.0000 0100
Q0107000 5.9073 -7.0929 3 6477 TRBR 151.0123 1,032 L0042 | L0100 .1000 4.6001 -2.3498 3 .0000 1.0000 100.0537 1.0000 0100
A6 7000 5.9073 -T.0929 5 6430 LTTRR 1469501 1.0249 L0816 | L0100 L1000 4,6001 -2.3498 5 L0000 1.0000 100.0537 1.0000 0100
0017000 5,9073 -T.0929 10 6410 L7843 1448645 1L0103 L0800 | L0100 .1000 46001 -2.3438 10 L0000 1.0000 100.0536 1.0000 0100
0007000 £.9073 -7.0929 w5300 L7865 1433829 1.OOOO L0888 | L0100 .1000 4.6001 -2.3498 o L0000 ,0000 100.0535 1.0000 0100

5) ratio= Vg, &/ Va,
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Table 2. Optimal ALT Plans for Weibull Grouped Data Under Equal Probability Inspection Scheme(q= 0, 1)

Py P s* g* Ve ratio B P, P, hjo b/oc kB s* r* V. ratio P,
RN ) R BM6 GR3.GEM D93 G016 | 0D TO0D 46001 -4TREE D B2 LB9RT R6.TOEL L.2IST L1284
00130 CETEBEM MO.8620 L0%15 2819 | IOD T000 4.6000 -4TREQ G L5288 782 T.0ME 1@ LG
B0 3500 AL 660 1428650 L0419 2199 | L0100 7000 48000 4788 5 8210 TM8 TA.STM LUB2T 1MS

SRS LGS LOIET L2082 | 000 000 4.6000 -4.7858 10 5160 TBME TL.EZ9 0205 U
JNE 679 DT.IME OO0 2003 | 000 OO0 46001 47858 e SLETM LIS 1.0000 1098

RILIRNCE NS
0013800

001 S0 JTT6IM 218 12965 210 | L0100 5000 46000 -4.2336 2 60T 7RG 1232040 L2876 0820

R TET0 L6407 2491907 11233 1968 | L0100 000 4.6001 -4.2336 3 4962 .THO 1ICLBZ6T 1.1305 0RO
LA 6T ESTE LAT08 LCSBL 91T | L0I00 5000 48001 4336 T 4GB0 7200 104942 L.0B4 0763

SR B0 L7007 L0 LI8G6 ) 0100 000 46001 423810 48T 1D 100.8141 1.0283 .0ME
BP0 LAWY L0 L1827 | (0100 5000 4.6000 42336 w 4T TAOT B.0069 D.0000 07N

o0y
001 B

908 460190 LAOTE LI36 | 000 2600 4.6001 -D3MZ T 2B 6356 213IT0 LR2R MO
F24ATLORS0 1LMBL ED | L0L0 2000 46081 -33MZ 3 4125 673 1381098 11679 0892
G469 86,3668 LOTIA1GR 1 MO0 2600 ABOCT -3IMZ E 4043 BMME ITEI83 L0882 03
B8 OTLANT LS4 %0 | 000 L2500 4500 -3.054210 L399 7091 I67.186E 10380 03T
AT LB0ERI 10000 1ME | 010G L2500 46001 -DIBZ e LISH 2D 161.0GBL 10006 37O

001

ST TIE6ET8 1352 0831 | LOBOG (900 29702 4497 2 3098 840 1524 LOSTL L1966
B0 BS540 11626 07RO | OO0 L0800 29702 4474 3 M7 G 150038 10280 1904
£360 5986964 1.0802 .CT6Z | L0500 L9300 2.9M2 44974 5 G196 LBETL 4.BM4T L0126 132
486 ST4ATED 103G LOTEE | 000 900 2.9%00 -4AQTE 0 320 B TR L.0DAE 1969
F591 SELIT06 10000 0728 | L0B0C 0900 2.9702 4.49M w 3T AT 1463 LOOOC 1977

OB 122.7R26 4T BBD 10600 BOCO 2.9%00 3602 10162 BE45 19.4604 1.0686 L1970
945 1320.0000 11814 0062 1 600 9000 29702 -3.8042 3 3083 8682 188336 10816 151V
S164 126,756 109l L0851 | 500 0000 2972 38042 5 J0M B7E4 18528 LMY 46
(G009 [169.5452 L.405 0344 | 0B0C L0060 2.9702 -LADMZ G 294 BTB4 IBL36ID 16 1465
A1 [124,0687 10000 0338 | L050C (9000 £.9702 -B.B042 e 228 LSRG IBL200 10000 47

506 BBETAS LBBE 2825 [ 000 POM0 2.3702 -3,
851 82813 LOTBE L2T20 ) O TON0 28702 -3
889 185N LOSEE 364 | 00 TO0G 972 -
085 TLEEM LOME 288 ) 050 000 29702 -
JUROTETR L0028t | 0 TO00 2.2

L2662 BT 26959 1107 L1120
JBI6 ST BAOTD LOR LT
2419 BR2h 22.8%60 1026 g
Q45 B8 22587 L1010
JEAIL I R LV )

BT ATINT LI BT 0500 000 2.8 2
136 1330661 L1083 1930 | .DOS 5000 2.9702
5898 126.1297 1.0B15 1860 | .0B0C Sor 2.97C2 o1& B9 26744 10993 0063
GO L0560 1021 188 | L00C BOOC 29702 -DOOTI0 LI609 BWC LTS LI TR
SJOELOUISA0Y LU L 1TM p 000 S00C B2 LGOI e LIBE QIS BTG LD 4

%L R604 205083 L1E0s 0817
FBAE O U R T AT

BT MDLOBM LM LN00 L L0500 LBS00 20702 -10AD 20000 &% METEDR 1.B40% LOBIN
580 215027 11367 1226 | (0500 2500 2.9702 L7243 3 .0000 8532 .muo 11T 5600
A3 WCE LOBET 198 | 06 20 9TE -LTMD B 000D M G1EEDD LOREM LSO
6883 1934246 0280 L1150 | L0500 2600 2.8702 -LM3 NG .0OG0  B98E MCEMT
960 1BRIRID LOODO 3D | L0800 L2500 29700 L7 L0000 26 2027 L0Go0 0506

095 363,602 L.050 L0832 | 0en 80D 2604 -BTTIS 0L 3SR A.8BE6 10M0
S 200686 11532 0763 | 1000 3900 2,264 PRV AV R
SBA0 013078 LOTET 07 ] Loc L 9%00 22504 f QN G
769 1832502 £.0328 0TE | L00C B9 2.2504 H"”‘ 41520 366 L i
(G858 2801508 10000 LOTSE | L1000 9900 2.2504 -3.%775 w1480 G4DB 9.2020 10006 L1688

796 TG LGS 0088 | LI00n 9000 2.25M -3
SIS REDY LT GHE | 000 0000 2.2504 DBE0 WD 39973 L0 0B
B3T3 SREAITD L0R9T pEO 000 3000 2.2 EOKM 3800 9.9285 10005 1075
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Optimal ALT plans under continuous inspection are determined by results of Meeker and
Nelson(1976), Nelson and Meeker(1978) and Escobar and Meeker(1986).

General conclusions may be drawn from the tables,

(1) One of main conclusion is that Ve, . is not sensitive to %2 and this insensitivity becomes
more apparent as ¢ decreases and £>3,

This implies that in designing ALT plans under intermittent inspection for estimating a low
quantile at the design stress, the large number of inspections must be not necessarily, which is
a reason that experimenters choose intermittent inspection rather than continuous inspection by
reducing inspection cost and testing efforts,

(2) A striking phenomenon is that the optimal stress level(s,*) and the optimal proportion of
test units allocated to the low stress(x*) are rather stable over £=3 for all cases considered,

(3) Incidently as quantile is close to P; and P,<0.9, 7* is more stable, As P, increase and/
or P, decreases, s * gets close to the design stress level and z* increases for all quantiles, In
particular, when ¢ = P, and P,< 10+ P,, s* =~ 0 and r*=~ 1, which almost no need for an
ALT,

(4) As number of inspections increase, 7* doesn’t decrease and s,* almost nondecreases so
that information of test results at the low stress can be gained a little more when ¢>P,,

EXAMPLE

Meeker and Hahn(1985) gave data for an adhesive —bonded power element in an ALT that
estimated the relationship between failure time and temperature,

In this example, 300 items were available for testing between 50°C and 120°C. Censoring time
was 6 months and it was anticipated that probability of failure at 50°C and 120°C would be about
0.1% and 90%.

Tenth percentile at the design stress(50°C) need to be estimated with three inspections, For

example, $*=0,6868 and 7*=0, 6715 from Table 2, Thus,

= (120—50) sF +50=98C

_ —T.7413
B./o=755 Tegy = 0. 1106

B,/o=(6.9073—0.1106) + In 180 =25, 499
7 =300 - 0. 6715201
1y =99

Inspection times at the high and low stresses can be determined by P,, P, in Table 2, Egs,



(3.5) and (3.6) and ¢ which may be estimated by graphical methods such as hazard. or
probability plots or techniques described in Mann et al, (1974), chapter 5 using preliminary test
at any overstress as the high stress etc, and historical data,

4. Sensitivity Analysis and Small Sample Study

To determine an optimal ALT plan, required inputs are guessed values for failure probability
P, and P, until censoring time at the design and high stresses on behalf of unknown b,, 5, and
a.

Chernoff (1962) called this situation “locally optimal” and recommended sensitivity analvsis,
Let P, and P, be the guessed values of P, and P, respectively, For P, and P,, false optimal
st and 7* can be determined as s', r*.

In Table 3—5, V,, o (Sh )/ Va, w(sf, 7%) to asses the sensitivity of the test plans are listed
for various cases of true P,, P, with £=3, ¢=0,01, 0.1 and £=10, ¢=0.1, This sensitivity
means the relative amount of increase in V,, , due to uncertainties involved in P, and F,

From Table 3-5, I make an observation that moderate deviations from P, and P,
(approximately —70 ~+200% from P, and—10~+30% from P,) are appreciably tolerabie in
terms of the asyvmptotic variance of a quantile at the design stress in sense that results of
sensitivity is mostly not greater than 15%, although the detailed tabulations are not given here
by limitation of space,

Table 4 and 5 show that the sensitivity values are fairly stable over number of inspection for
given P, and P,,

Values of ratio less than 1 in Tables can be occured because inspection times at two
stress levels determined by P, and P, are different from them by P, and P, and these times
by true P, and P, are not optimal inspection times to minimize V, , in the design of ALT
plans,

It is a matter of great practical interest to asses the property of optimal ALT plans obtiined
using the method of maximum likelihood and asymptotic variance of the estimator,

Table 3. Sensitivities of V,, . when false P,=001, false P,=0.9, 2=3 and ¢g=0, 01

]
~~_true P, !
i 0.7 0.8 0.9 0.95 0.99

true P, |

_— |
0.003 \‘ 1. 0843 1. 1112 1.1374 1.1436 1. 1027
0. 005 } 1. 0209 1.0341 1. 0446 1. 0416 0.9964
0,01 i 1. 0075 1, 0027 1, 0000 0, 9962 0. 9700
0,02 ‘ 1. 0448 1. 0352 1. 0352 1.0373 1. 0462
0.03 1. 0824 1.0774 1. 0896 1. 1091 1. 1253
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Table 4. Sensitivities of V,, . when false P,=0.01, false P,=09, £=3 and ¢=0.1

true P,
0.7 0.8 0.9 0.95 0.99
true P,
0,003 1.0191 1, 0437 1, 0843 1,1229 1. 2031
0. 005 0. 9868 1, 0035 1. 0316 1. 0576 1, 1058
0.01 (0, 9803 0, 9864 1. 0000 1.0131 1, 0340
0.02 1, 0556 1. 0481 1. 0483 1. 0539 1, 0689
0,03 1.1770 1. 1554 1. 1469 1. 1446 1, 1671

Table 5. Sensitivities of V,, ., when false F,=0.01, false P,=09, 2 =10 and ¢=0,1

true P,
0.7 0.8 0.9 0.95 0.99
true P,
0, 003 1.0476 1, 0631 1. 0842 1.0997 1.1193
0. 005 1. 0100 1, 0187 1.0311 1, 0399 1. 0489
0.01 0. 9989 0. 9980 1. 0000 1. 0023 1, 0048
0,02 1. 0712 1. 0566 1. 0469 1. 0447 1, 0493
0.03 1. 1892 1. 1594 1.1378 1, 1316 1. 1387

Especially, when deal with field data, size of sample is often small or moderate, Thus
whether small or moderate size of sample is applied to optimal ALT plans by large sample
criterion, Monte Carlo study has been conducted,

The sample and parameter values included in this study is outlined in Table 6,

Analyses are based on 1000 replications for each of configurations, All data generation,
parameter estimation and analyses are carry out using FORTRAN program and it is available
from the author,

Table 6. Monte Carlo Configuration

P, P, k quantile sample size
0,01 0.9 3 0.01,0,1 40, 100, 200
0.01 0.9 5,00 0.1 40, 100, 200
0,01* 0.9 3 1 0.1 40, 100, 200

%) a standard plan of the mid—low stress level, equal sample size at two stresses under equally spaced
inspection scheme,
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The quality of maximum likelihood estimates by optimal design of ALT has becu measured
by sample average, sample standard deviation, 7 - statistic. mean squared error (MSE) for b,
b, o and cuantiles at the design stress,

The corresponding formulas related to 4, are:
b= 2B/ 7.
sd (b)) = 2 (B~ B/ r
J=1

T (b)) =7 (by— by) /5d (by)

MSE(bo):(bo’"bo)2+{Sd(bo IS 4,1

r . number of replications that converge by scoring method
};é“ . estimate of &, at j th replication,

In similar way, those values for other parameters can be computed, Monte Carlo results are
summarized in Table 7 for estimates of &, &, ¢ and some quantiles at the design stress,

[ draw some conclusions on properties of optimal ALT plans developed by large sample
criterion for small and moderate size of sample,

(1) For moderate sample size (N =100, 200), optimal ALT plans produce overall satisfactory
estimation of parameters, However, for small sample size (N =40), the estimates produce the
substantially large biases and mean squared errors,

(2) Results show that estimates of & and quantiles at the design stress are almost positively
biased and estimates of 6, and ¢ are almost negatively biased,

(3) The increase of a sample size has a strong favorable effect on the quality of estimates,

(4) Finally, simulation results show that major contribution of the mean squared error is due
to th: somple varianoo,

Table 8 conta.nis resutts from comparision of estimates of 0, 1th quantile at the design stress
by «ptimal ALT plans(k :=3, 5, <o) and a standard plan(k=3), assuming that s=1, with
mid - Jow stress level (<, -.0,5) and equal sample size at two stress levels under equally spuaced
inspection scheme,

Inspection of Table # indicates that large sample criterion can be applied to moderate size of
sample and estimates of 0, 1th quantile at the design stress are a little positively skewed for all
plans, The usefulness of large sample approximation can be checked by comparing sample
standard deviation with asymptotic values, i e, , differences are 10% low under optimal ALT
plans with 2=3,5,

It appears that scoring method is quite satisfactory for censored data, but it may be necessary
to replace it Newton- Raphson method with concave reparameterization by Burridge(1980) for

grouped data owing to lower proportion of convergence by scoring method when number of
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inspections are small,

Also, optimal ALT plans are better than a standard plan and plans with small number of
inspections can be comparable with plans under continuous inspection, But for small sample
size, optimal ALT plans with £=3, 5, oo are resulted in a poor quality of estimates,

5. Conclusion

In this paper, asymptotically optimal accelerated life test plans for Weibull distributed
lifetimes under type— I censoring and intermittent inspection whose advantages lie in the
simplicity obtained in the collection and handling of the data are developed for various cases to
be applied practically in field,

Table 7. Monte Carlo Results by Optimal ALT Plans with P,=0.01, .=0.9 and %2 =3

* true sam- sample true sam-| sam- | sample
para-|quandpara- |ple (sample|std. T~ MSE |para-lquan-{para- |ple | ple std, T-— MSE
meter| tile |meter/g| size | mean |deviation |statistic| /o |meter|tile Imeter/g|size | mean | deviation|statistic|/¢®

/a /o /o /o
{0 48307 LT 3.1887 | 0,707 4 ST e L LT
001 ] 46000 | 00 465041 LIMD 0,957 | 1476 infl ! 00 G908 | D24 - LA ORG
20 46453 u.ABTL 15184 1,737 B O LV B e - 1,799 | 029
by 4
40 LA LIRS D065 | 1008 i) LS | e LA 1l
e 4,600 | 180 LEE0T L3060 14283 LS4 i1 | o 9 01 - (ERRannn
200 §.6448) 1087 1I634 | 0.5386 B0 63987 | e - OR8] BLOIRE
0] -5m| 0 2TEE - | 7Y i | 0208 ) 122k 4705 | AR
000 ] -5.4342 | 100 |- 5.5133) 14032 |- 1.6508 | L9751 001 £ 100 | 0.0861 | 0,707 15620 | 0.5082
mol-sa] 09 |- L% | 0.9 | 200 | 00671 SRS 3.7807 | 0.2006
b -
4 - 5706 20000 |- 40044 ) 4520 ) 40 | 25593 | 1,4080 4465 | 2.0265
B -RAME 100 f- 54908 L1094 |- 16832 | 1.23E2 1] 2498 ) i0 {24835 | 0.7550 L7 | 0.7
M |- EAT 08004 |- LEROT | 0.6426 M0 | 23051 | O.E6H 4020 ] 0.1

*) the quantile at the design stress level estimated by an optimal ALT plan



Table 8. Comparision of the Estimates of 0.ith Quantile at the Design Stress
by Some ALT Plans with P, =0.01, P,=0.9 and True Parameter—=2.3498¢

sample asymptotic
plan sample |sample] std, T- MSE |standard
size mean |deviation|statistic| /g* |deviation
/o /o /o /o
: 40 25598 14080 4,345 20265 | 1k
optimal ALT plan - & R0 4 e
under equal L PO O R VA IR N0
probability
inspection{ & = 3) 30 20 5650 2,502 .00 LIRS

. 4 2.6EE8 1469 5,067 ERGA I
optimal ALT plan ’

under equal ST P 1 I T T O UK I A P
probability
inspection( & =5) it 24097 61 2065 0,870 | L.0ED
40 2475 LR 2,4468 AT L L0
optimal ALT plan
under continuous 100 2424 6,751 2.56% 05408 G
inspection
i 25802 i 4308 1,378 0.418 | 24060
L 26414 147 4.4138 LI | L3

a standard
plan under 180 2,478 (1.9494 4683 50162 | 6.3450
equally spaced

. . A0 DAY 5OERRD 1 piRG (4 Ba6h ;e
inspection( & =3) S 2,584 Uidd PRI ULo0dd i

%) an ALT plan tested at a mid—low stress and high stress levels with equal sample sizes
assuming that g=1

Computational results indicate that the large number of inspections at overstress levels are not
necessary and effect of guess estimates for parameters would expect to be fairly tolerable for
range of parameter values considered,

Results for small sample study on optimal plans using large sample criterion show that the
effect of large sample approximation is not substantial for moderate size of sample, but is
considerable for small size of sample,

Finally, future research in this area will extend more complicated problems in which other
probability models, inspection schemes and censoring types as type— [I or progressively will be
considered,

Also, because optimal plan is less robust to deviations from assumed model (see Meeker (1984)
and Meeker and Hahn(1985)), compromise accelerated life test plans with subexperiments more
than two stress levels may be recommended,
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