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ABSTRACT

In this paper we study some procedures selecting all populations close to a control based on
sample medians for several double exponential populations, The cases of known and unknown
control are considered, Tables needed to use the proposed rules are provided and an illustrative

example is also included,

1. Introduction

Selection and ranking problems for 2 populations have been considered by many authors since
the early works of Bechhofer(1954) and Gupta(1956) (see Gupta and Panchapakesan(1979) for
further references).

As one of many different settings of the problems, the problem of selecting all populations
close to a control is closely related to quality control problems. For example, suppose there are
several brands of ball bearings for a shaft in a bicycle. In this situation it is important to insure
that the shafts will be capable of assembly at random into a bearing. Hence the diametral
clearance, which is the difference between the inside diameter of the bearing and the outside

diameter of the shaft, should be within some specification limits. Therefore one may be
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interested in choosing some brands which meet the quality specification. Gupta and Singh(1977)
have considered this problem based on sample means for normal and gamma populations.

It is well-known that for a symmetric distribution the sample median is an unbiased estimator
of the location parameter and is robust in the presence of contaminations from heavy-tailed
distributions. Hence selection procedures based on sample medians under the formulation of the
subset selection approach have been developed for several distrbutions. Gupta and Leong(1979)
have proposed and studied a procedure for selecting the largest of location parameters for the
case of double exponential distributions. Gupta and Singh(1980) have investigated the case of
normal distributions and Lorenzen and McDonald(1981) have considered the case of logistic
distributions.

The double exponential distributions have tails which are heavier than those of normal! and
logistic distributions but not as heavy as that of a Cauchy distribution. Thus for some
applications which primarily concerned with exponential tails, it would seem that the double
exponential model would be a useful model. For example, it has been suggested as a model for
the distribution of the strength of flaws in materials.(Epstein(1948))

In this paper, we propose and study some selection procedures which contain all populations
close to a control based on sample medians for double exponential populations,

In Setion 2, we formulate the problem and propose some procedures for the cases of known

and unkonwn control, We also investigate some properties of the proposed procedures,

In Setion 3, we provide an illustrative example, The design constants are computed and
tabulated in Table I and II.

2. Framework and the proposed rules R; and R,

In this section we formulate the problem for selecting a subset which contains all populations
close to a control and propose selection procedures R, and R,,

2.1. Framework

Let 7o, 71,'-, e be k+1(=2) independent double exponential populations with unknown
location parameters 6, 61, -, 8x and common known variance ¢?, respectively, Since ¢? i3
assumed to be known, it is assumed that g2=1 without loss of generality, Here 7z, is a control
population and §, may be known or unknown,

Let @={8= (6o, 61, ", Ox)|—00¢Bi{o0, i=0, 1, -+, k} be the parameter space, where QS R**!
Note that for 8, known, §, is dropped out from # and thus Q< R*, It is said that 7, is close to a
control 1, if and only if |6 — 8,|< 8, where § (=0) is a contant determined by an experimenter «



prior to an experiment, Then our goal is to select a subset including all populations close to a control
7o with the probabilistic requirement which is so - called the P*-condition, 7, e,, infseo P (CS|

R)=P*, 0KP*<1, where CS stands for a correct selection which includes all populations close
to a control mo.

Let X;;,7=1,2, -, n be n independent random samples from r; and the pdf f(-) and the cdf
F(+) of X are given by

F@)= Y2 exp (/B 6]}, —oocacon

and

—;- exp {v2(x—8)} , x4
Fx)=

1*% exp {—v/2(x—0)},x =8,

Let X; be its sample medians /=1, 2, -+, k#, respectively, For convenience, let n=2m+1, m>
0 and let F;(x)=F (x—§,;) be a distribution function of r,,7=1,2, -, k, respectively, Then the
cdf of X, d;, denoted by G, (x), is given by

G (x) :IFI(I)(m+1' m+1),

where I, (@, ) is an incomplete beta function with parameters ¢ and g.
Therefore the pdf g,( ) and the cdf Gn(+) of X.—g, are given by

~£@.+1) I_ Al_ —al|x|Tm+1 _i —alx|lm
&n(x) = (m )2 [Ze I i=geem]m, | x|< 00

and

™ Zm+1 1 ax J 1 ax iy
= (NG e )T
Gm(x):
m 2m+1\/ 1 AL/ IR
I € (e T A

respectively, where a=,72,
2.2. The proposed rules R, and R,

Now we propose selection rules R, for known §, and R, for unknown @, as follows,



(A) 6, known
First, we consider the case that §, is known, In this case, no samples are needed to be taken
from the control population z,, Thus we propose the rule R, as follows :
R, : Select &, if and only if |X;,—8o|<6 +d,,

where d,(>0) is chosen to satisfy the P*—condition, Then the following theorem holds,

Theorem 2.1. For given P*(0{P*{1), &>0 and the proposed rule R,

inf P(CS|R) =[Gn (28 +d\) +Gnld) —1]%,

18,~80l<5

Proof, Let %k be the number of populations satisfying |§;—8|<8. Hence without loss of
generality, 7., 7., **-, mx, are assumed to be k&, populations close to a control z,, Then

P(CSIR) =P (6o—08—di <X, <0+6+d,i=1,2, k)
=TI P (6.~ 6~ di<Ri— 0,56~ 0.+ +4)
=[Gn(Bo—0:+8 +d;) — Gr(Bo—0:~ 6 —d)) 1",

Now consider a function
T (#) = Gn(Bo—tu+35+d) —Gu(Go—u—8—dy).

It is easy to see that the function 7 (u) is symmetric about §, and is increasing(decreasing) in
u for u<@o(u>6,). It follows that

inf T {u)=T(6—8)=T (6e+8),

lu—-g8g|=8

and thus

inf P(CSlR)):[Gm(26+d1)+Gm(dl)_1]k.

[8i—80is8

This completes the proof,

From Theorem 2,1., one can easily get the following corollary,

Corollary 2.2. For given P*(0<P*<1)and §)>0, the design constant 4; for the rule R, is the



solution of the equation
Gm (26+d1) +Gm(d1) '1: (P*)”k.
Proof, It directly follows from Theorem 2, 1,

The values of 4, are computed and tabulated in Table I for £=1(1)6, m=1(1)6, §=0.2 and
P*=_175,.90,.95,.99. The proposed rule R, has the following property which is regarded as
monotonicity property,

Theorem 2.3. For |8 —6.<|6;— 6ol

P{r: is being selected |R,}>P{r, is being selected |R,}.

Proof, Let |8, —8,/=c; and |8;— 8o|=c¢,. Then c¢<c;. Let P; be the probability which 7, is being
selected, Then

R“P_::[Gm(00“01+8+dl)—Gm(go_al“’g‘_dl)]
- [Gm(60—0j+6+dl) *Gm(eo—gj‘(S‘dl)]
:[Gm(_ci+5+d1)—Gm("ci_g“dl)]
’[Gm(“cj+8+dl)_Gm(*cj_8_d1)]
By using the notation T (#;) defined in the proof of Theorem 2,1,, one can see that
@) if ¢;, ¢;>0, then T (¢;)) —T (¢;) =20,
(ii)y if ¢;, ¢;<0, then T (—c¢)—T (—c¢;) =20,
(iit) if €20, ¢€0, then T (¢;) —T (—¢;) =0,
(iv) if <0, ¢>0, then T (—¢)—T (¢;) =0,
It follows P,>P; from (i) to (iv), Thus the proof is complete,
(B) 8, unknown
Next, we consider the case that §, is unknown, Since &, is unknown, 2m+1(m =0)
independent random samples X,;, Xos, '+, Xo:m+: are taken from the control population 7z, and
let X, be its sample median, Then we propose another rule R, as follows :

R, : Select r, if and only if |X, - X,|<8+ &,

where &, (=0) is chosen to satisfy the P*—condition, Now similar to the case of known &, the



following theorem and corollary hold,
Theorem 2.4. For given P*(0<P*{1), 6>0 and the proposed rule R,
¢
inf P (CSIR) = [ [Gulh+dy) = Gp(h—28— ) gn () dh
18,698 I

+ [T [Gu(h+26+d) ~ Gn(h—dk) V"gn (h) .

Proof, Let k be the number of populations satisfying |9, —&|<8 which is defined in the case
A. Then

P(CSIR) =P (X -6 —d<Xi<X+8+d, i=1,2,, k)
:_[:[Gm(h+eowei-+a+dz)
— Gl 66— 8 — )1 gm (h) dh,
Here T (8:;, h) is defined by
T (0, W=GCnlh+6b—040+d)—Gn(h+b—0:—38 ).

Then one can see that, for each fixed 2 € R,
(i) 7(8;, h) is continuous function of 4,
(i) T(6,, k) is symmetric about §=h+6, i.e., T (h+6—6:, W=T(ht6+0, h),
(iii) 7°(@,, h) increases (decreases) in 8, if §:;<h+6(8:>h+6&).

Thus for each fixed 4, it follows from (i) to (iii),

T(G+38, b it KO

inf T(.,, h)= .
16;--8¢l<8 TG -0, h) if O,

Hence
P(CSIR) 2 [ TL[Gu(h+ db) = G (h—26 ~ i) 1gn (h) dh
[T ILIGath 428+ @) ~Gn(h—d) ) gn(h) ah.

Therefore



inf P(CSIR) = [ [Gulh+d,) — G (25— di) |*gm (1)

18— 8gl<s
[T (G268 + )~ G (h— do) g (B i,

Thus the proof is complete,

Corollary 2.5. For given P*(0<P*<1), §>0 and the rule R,, the design constant d, is the
solution of the equation

inf P(CS|R,) =P*,

16; Bol=8
Proof, It directly follows from Theorem 2, 4,

The values of & are computed and tabulated in Table II for 2=1(1)6, m=1(1)6, 8 =0. 2 and
P*=_75,.90,.95,.99, The Gauss—Laguerre quadrature based on 15 points was used to perform
the numerical integration,

Similar to the rule R, the proposed rule R, has also monotonicity property as follows,
Theorem 2.6. For |9.— &|<|6;,— &),

P{r: is being selected |R,} > P{r; is being selected |R,},
Proof, The proof is analogous to that of Theorem 2,3, and hence is being omitted,

Remark : All computations have been carried out by Cyber 170/835 at the Kyungpook
National University,

3. An illustrative example

In this section we provide an example for the illustrative purpose with imaginary data used by
Gupta and Leong(1979). There are 5 populations r,, m, -+, 75 With location parameters @; to be
0,2.5,3.4, —2.0, —0.65, Here §, is assumed to be known as §,=1,8, Also & is chosen to be § =
0.2. Now one wishes to select all the populations which are close to a control §,=1.8, From each
population 9 observations were taken as follows :

Then the sample medians of 71, m, -, 75 are X, =—0.1761, X, =2.3239, X, = 3.2239, X, = -2,
1761, X = 0. 8261, respectively, For P*=0(,95, d,=0,7676 from Table I and hence the rule R,
selects all populations whose medians are in [0, 8324, 2, 7676]. Thus only n, is selected, For 4

unknown, 1, is regarded as a control z. Hence there are 4 populations m, 7, . 7.



b8 T2 3 T4 Ts

—3.4839 —9.839 —. 0839 —5, 4839 —4,1339
—2.6762 —.1762 L7238 —4,6762 —3.3262
-. 3129 2.1871 3.0871 —2.3127 —. 9629
-.2264 2.2736 3.1736 —2.2264 —. 8764
—. 1761 2,3239 3.2239 —2.1761 —, 8261
. 1462 2. 6462 3.5462 —1.8538 —. 5038
. 3033 2.8033 3.7033 —1. 6967 —. 3467
. 6160 4. 1160 5. 0160 —. 3840 . 9660

5. 6924 8.1924 9. 0924 3. 6924 5.0424 |

Therefore the sample medians of the control population m, m, m, z and 7 are X,=2.323¢,
X.1=-0.1761, X,=3.2239, X,=—2,1761, X;=—0,8261, respectively, For P*=0,95, d,=1,07 0
from Table II and hence the rule R, selects all populations whose medians are in [1, 0529, 3.
5949]. Thus only r; is selected,

Table L. Values of d, for the case of the double exponential distribution with unit variance
when 6 =0.2 and 6, is known.

m k pP* .75 .90 .95 .99
1 4 .9101 1. 2696 1.5273 2,1087
5 . 9898 1. 3495 1.6071 2, 1881
2 4 . 6509 . 9045 1. 0837 1, 4829
5 . 7076 . 9603 1,1389 1, 5370
3 4 . 5216 L7231 . 8640 1,1744
5 . 5669 . 7671 . 0972 1. 2162
4 4 . 4434 .6137 . 7316 . 9893
5 . 4818 . 6506 . 7676 1. 0238
5 4 . 3905 . 5397 . 6424 . 8649
5 . 4243 L5719 .6736 . 8945
6 4 . 3522 . 4860 L9776 L7749
5 . 3826 L5148 . 6053 . 8010




Table II. Values of d; for the case of the double exponential distribution with unit variance
when 8 =0.2 and &, is unknown.
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