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ABSTRACT

Nonlinear rank statistics for the simple tree alternatives problem are considered, Pitman
efficiencies between several procedures are studied, A new maximin procedure is suggested and
shown to have good efficiency properties, Additionally, it is desirable to terminate the experi-
ment early comparing well known rank statistics or multiple comparison test statistics,

1. Introduction

Let X,,, X.., ., Xiss, 1=0,1,--, K, be(k+1) independent random samples, where X, j=
1,2,--,n;, is a sample from the ith population with an absolutely continuous distributinn
function F,=F(x—8,). In other words the distributions of the (£+1) populations are the sare
except for a possible difference in their location parameters, Without any loss of generalityv let
F(0)=p, so that < 7 is the pth percentile of F, It is of interest to test the null hypothesis

Hy : 6o=0. for i=1,2,--, k

against the partially ordered one-sided alternatives
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H :6<¢, for i=1,2,--,k and not H,

This is referred to “simple tree alternatives”,
Abelson and Tukey(1963) studied various order restricted testing problems, but they assumed
the parametric model, which is normal, And Shirahata(1980), Hettmansperger and Nortnn
(1987) and Fairly and Fligner(1987) also discussed the other alternatives problem through the
linear rank statistics, However, we propose a class of the nonlinear rank statistic,

We consider the following class of statistics

X
T = 1§1di W, (1)

where a's are suitably chosen weights and W, is the number of observations in the ith sample
not exceeding M, the fth order statistic in the sample from F;, f=[mp]+1, [x] repreasents the
largest integer not exceeding x and p is preassigned value,

The proposed class of test is reject H, in favor of the alternatives H, if

T<c (2)

where ¢ is a constant such that p (7T < ¢|H,),

Recently Chakraborti and Desu(1988a) proposed and studied a class of tests for the k-samnple
problems assuming the simle order alternatives, This class is a linear combination of statistics
W,x, 7j=2,3 -,k where W,;%xis a generalization of Mathisen’'s median test statistic for
comparing treatment ; with treatment 1,

The optimal test is compared with some of the previously proposed tests, Further Chakraboiti
and Desu(1988b) extended the Mathisen’s two sample test to the problem of comparing several
treatments with a control, The advantage of this test over the test of Slivka(1970), which is a
multiple comparison test, is that new test requires an experiment with shorter average duration,
This feature is quite an attractive one in the context of lifetime-testing experiments where
testing time may be expensive, The weights a's are determined such that the Pitman efficacy
of the test is maximized for a suitable sub-class of the local alternatives, Chakraborti and Desu
(1988b)’s statistic is a member of our proposed statistics,

I1. Test Statistics

Consider the following sequences of Pitman alternatives

HIAN:&)JY'C,/\/—]VT, i::1’2...,k (3)



k
where ¢; 2 ¢ =0 with at least one strict inequality and N =>!#n, The weights a’s are deter-
i=0

mined in each situation so that the Pitman efficacy of the test (2) based on T is maximized,
Since T is not a linear ranlk statistic, many of the standard theorems can not be used to find
the asymptotic distribution of T, However, we can use the following theorem which is an
immediate corollary of theorem 5 of Chakraborti(1984),

Theorem 1:Let W be the k-dimensional vector whose ith element is
N(Wi/n,—F &), i=1,2, k,

Suppose that, as min (s, ny, -, 1) >0, n,/N-A, 0<A; <1, {=0,1,-, &k, Further, suppose
that F' (&) =f (&) exists and it is positive for i=0,1, -, 2, Then

w_" N0, S)

S=(Q:@itd0 '+ 3:b:di™")

where po=p(1—p), pi=-F: (&) (1-F:(&)), Q=f(&)/L(&), i=0,1,,k
and §,, is the kronecker delta,

From theorem 1, it can be shown that the Pitman efficacy of T is

Zk’ ai/i x'C; f (0)
1 ) p(A-p) 4)
2

Now if we reject H,, when T <constantx Z,, the test based on T is approximately of size o
and the approximate local power is ¢Z,8, The test with the largest value for ¢ is the most
efficient and referred to as the optimal or the best test, The best test of this class is given in
the following,

Theorem 2 : Given the pattern c¢= (g, ¢, -, ¢%'), ¢ is maximized by a;=A"'(¢;—¢,.) whera

k

Cw: Zl/lzfz'.
Proof
See Chakraborti and Desu(1988a),
Clearly the best test derived in theorem 2 has the maximum local power, The optimal test

statistic is



T (opty =340 (i = c) W, (5)

Now the asymptotic relative efficiency of any member of T
relative to the best is given by

ARE(T. T _($ag.cf /[ Saohar +{ S ) e - cwr+ eat)]

- ingk(_«_‘*],/(g'H{l) (g‘*'NQ') (6)

where ¢*= (¢, 1, - i) . H=(h;) is given by h;=2.(1.+2) and h;=A:A;) and H=(n,,) is
given by n,=A"'A (1 -4;,—Ad;) and %, =47 A (14— A).

Specifying the location parameters vector ¢ may be called specifying the “pattern to le
detected”, according to Hettmansperger and Norton(1987), Now if the experimenter is not ab.e
to specify the pattern, (. it may be necessary to provide some guidelines concerning the choice
of the constants a’s, Thus we propose a new statistic which is enjoying a optimal property, it
is referred to relative maximin (RM) statistic, a statistic which maximizes the minimumn

efficiency relative to the optimal test,

Theorem 3 :
s A=A
TR =2\ =75 W M
Proof
T(RM) =max m_ipl ARE(T, T (opt)) (8)

From Park, Chakraborti and Desu(1989), mig ARE(T, T (opt)) occurred at the
L€ Hax
slippage alternatives, ¢ =¢=-=¢—1=¢+1=-=¢<¢, for some i=1,2,:--, k, Now we are

maximizing min ARE(T, T (opt)) with respect to g,

ce Hian
min  ARE(T, T'iopt))

e H gy

=AA;a?/ (@ Ha) (1~ 4;) for some j=1,2,, &,

=b2/(b'D~'HD™'b)

a; and

. _ [ Ak
Letting b"ﬁ\/1~m



. I A
b=Da where D :dlag((\/ 1 - /1—_)) Then

MN =max b2 (b'D-'HD"'b)

(hib=2b}

Since b,2/6’D'HD"'b does not dopend on |b], but only on its direction we can take §,=1, so
that

MN:ma}ZX 1/6"Vh, where V=D"'HD™!
bibz=l T 7

Clearly, maximizing 1/5’Vb is the same as minimizing Vb, Since V is nonnegative definite,
b=1 makes b’ Vb minimum,
Thus 1=2

=Da, and the proof is completed,

III. Allocation of Observations.

We now turn to the problem of allocation of the experimental units to the treatments and the
control is such a may that the approximate power of 7 is maximized for the local alternative:,
It is of interest to consider this problem when we plan to start the experiment, Let us assure
that equal numbers of the experimental units are to be assigned to each of the treatments,

That is, we have 4 and A, =A== =A

Theorem 4 : With the restriction A, =1/2 and A=1/%
maximizes the efficacy of 7', given ¢, p and the density f,

Proof
When we have the restriction

T(RM)=3 W, that is, =1, i=1,2,
2=t

Thus the efficacy of T (RM) with this restriction is

with A +k&A=1, (9

Since A :—h:l—;;—v_ we are plugging this in (9).



A=d) sv R
A0 0 Al A, O
(1) + (1—4)2 PA-p) k* "P(Q-p).
\/ — Ao ‘“”ioff”

Thus given ¢, p and J, A, =1/2 maximizes the approximate local power of T (RM) (efficacy of
T (RM)).

IV. Simulation

When we consider the oneway layout problem, it is natural to consider Kruscal-Wallis test
statistic, so-called the omnibus test statistic, In this chapter, we are comparing our proposed
statistic with the omnibus test statistic, The results are based on 10, 000 iteration using Fortran
77. The study compares the estimated powers for various values of the location parameters
under normal, Cauchy, uniform distribution, The maximum variance of these estimetes is under
0.01. The IMSL subroutines RANOR, RANCHY, RANUNI were used to generate the random
numbers, The used ¢-level was 0,05, Let denote the location parameter for population ¢ and
8= (6, th, -, 0x) dencte the vector of location parameters, & is the location parameters for the
control population, Varicus configurations of § were used for £=2,3,4 and n,=kn, ni=n, -
1,2,--, k., And we are using p=1/2, We are putting some of simulation results,

The overall recommendation is to use T (RM), Especially it is suitable when the experi
menter believes the underlying distribution is heavy tailed like Cauchy, However, if it is thought
there whoud be a great deal of difference between treatments, Kruscal-Wallis statisitc is & bit
working better than our proposed statistic, And Simulation studies show that we can get niore
powerful results if we increase the control sample size,

This one varifies the result of theorem 4,

Monte Carlo Power Estimate:k=2, @=0.05

Underlying Distribution : Normal
n=10, 7% =10. =10, n=20
Location Parameter K- W RM . K- W RM

o 6 &

g 0.0 0.0 0,05 0,05 © 0,05 0,05
0 0.0 0.5 0,095 0.12 © 0.09 0.16
0 0.5 0.5 0.093 0.18 © 0,18 0,24
0 0.5 1,0 0,26 0,28 ° 0,44 0,35
0 1.0 1,0 0.42  0.40 ° 0.70 0.48
0 1.0 15 0.685 0.55 °~ 0.91 0.61
0 1.5 L5 0.8 0,67 . 0,98 0,75



Monte Carlo Power Estimate:k=3, ¢=0.05

Underlying Distribution ;| Normal
n=10, n=10:. n=10, n =30
location Parameter K-W RM . K-W RM

& 6 & &

0 0.0 0,0 00 0.05 0.05 0.05 0.05
0 0.0 0,0 0.5 0,21 0.15 0.22 0.19
0 0.5 0,0 05 0.22 0,20 0.34 0.23
0 0.5 0.5 0.5 0,17 0,28 0.27 0.30
0 0.5 L0 0.5 0,26 0.36 0.50 0.39
0 0.5 L0 10 0.59 0.44 0.76 0,47
0 1.0 1.0 1,0 0.75 0.55 0.87 0,56
¢ 0.5 1.0 L5 0.89 0.51 0.95 0.53
0 1.0 1.5 15 0.94 0,73 0.99 0.71
0 L5 1.5 15 0,98 0,81 0.99 0.85

Monte Carlo Power Estimate:k=2, ¢ =0.05

Underlying Distribution : Cauchy
n=10, n=10:n=10, #n,=20
Location Parameter K- W RM . K- W RM

&b 6 &

0 0.0 0.0 0,05 0.05 . 0.05 0,05
0 0.0 0.5 0,05 0.12 : 0,05 0,12
0 0.5 0.5 0.06 0.17 : 0.08 0,17
0 0.5 L0 0,09 0.24 © 0.13 0.22
0 1.0 1.0 0.14 0.31 :© 0.23 0.29
0 1.0 L5 0.19 0.38 © 0.32 0,36
0 L5 L5 0.28 0,47 © 0.45 0.44



Monte Carlo Power Estimate: £ =3, «=0.05

Underlying Distribution : Cauchy
n=10, % =10 n =10, 7 =30

Location Parameters K-W RM : K-W RM
b 6 & &
0 0.0 0.0 0,0 0,05 0,05 0,05 0.05
0 0.0 0.0 0.5 0,10 0,13 0,11 0.16
0 0.5 0.0 0.5 0.12 0.16 0,15 0.19
0 0.5 0.5 0.5 0.07 0,20 0,11 0.24
0 0.5 10 0,3 0.08 0,25 0.16 0,28
0 0.5 1.0 1,0 0.13 0.30 0.26 0,34
0 L0 1.0 10 0.15 0,36 0.3¢4 0.40
0 0.5 L0 L5 0,25 0,34 0.42 0,38
0 10 15 L5 0,25 0,48 0.53 0.51
0 L% L5 L5 0.28 0,55 0.62 0.56
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