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ABSTRACT

In this paper we present the shrunken testing estimator for the variance of normal population
and we find the condition that can be used in seeking the situations in which the proposed

estimator is superior to the minimum variance unbiased estimator,

1. Introduction

In parametric model. the estimating unknown parameter is one of the important problems,
Usually we use minimuin variance unbiased estimator for the unknown parameter, But we may
consider one kind of biased estimators which are considerd for the substantial reduction of mean
square error (MSE), Recently these problems are considered widly, (for well-known example,
Bayesian approach, Ridge estimators, etc), In this paper we shall propose a new type biased
estimator of so-called shrinkage estimator, And we shall obtain the testing condition that tie
proposed estimator may be used and the relative efficiency of proposed estimator with respect

to minimum variance unbiased estimator,
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2. Proposed Estimators for Normal Variance

A random variable x is distributed with the density function

~ ph )2

.ﬂ((x)=7é;1;§r‘(%6’;”, —oco<x< 0 (1)

To astimate ¢* in this distribution, s*(sample variance) which is MVUE of &% is often used.
The shrunken estimator by Thompson for &2 is

F=hs*+(1-h) o} (2)

Where, o2 is a prior value of ¢?, s? is minimum variance unbiased estimator for ¢%, and %
is a constant between zero and one,
Ordinary the shrinkage estimators have more relative efficiency than s? if ¢f is near to ¢%, So
has this estimator, Then we can calculate the mean square error of §° easily as follow :

MSE(&’):E(<?~02)2=2:10;—+ (1—h)* (6 — 07)* (3)

Since the mean square error of s? which denoted by Rohattgi is

MSE(s?) = Var(s) =297 @

The relative efficiency of & with respect to s? is

MSE (5?) 1
REF(&, s3)= = — 7 (5)
MSE (&) W+ (1_}2)2(]1_2_1_)(1_%)2
In this REF(&, s?), the condition of REF (&, s =1 is
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And the closer the value of ¢¢/6? to 1, the greater will be REF (&, s?). So we propose
secondary shrinkage test estimator



hs*+(1—h) g¢ . for s’e R
s? , for s’ R ™

&=
i, e, in estimation of o2, if s? satisfies the region R, we use

hs? 4+ (1-—-h) oi (8)

and otherwise we use s, According to the methodology of Katti, the region R is determined by
the testing hypothesis ;

H, . 6°= o against H, . ¢*+ o
If the null hypothesis is accepted, then we use /s®+ (1— %) ¢? for estimating ¢%, So we obtainad

the condition that null hypothesis is accepted,
The condition by Katti is

A, gﬁ(f—%%w)if <A, (9)

0
where, X ~x*(n—-1)
Pr{X>A::}::1‘“(!/2, P’{X<A1}:a/2

Therefore the complete estimator is

v A, o8 A:oi
hs*+ (1 h) o¢ , o SO e S200
@2:{ \ ’ n—1 n—1 (10)
S , otherwise

Then for the calculation of REF(&, s?), we obtained expected value of # and the mean
square error of &, These are ;
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And E(@ =c"--(1-h)o*-K+{1~RMot- L (12)



where , F(x, »)=-5— xe"‘t’“‘dt

Apoi n+1 _ (A105 n+1)
K= F(Zcrz’ 2 ) F{%e 2

L=r(F 1R )

So the estimator & has bias (1— %) {gé + L —¢?K )
Similarly,

MSE(&) = E (& —0°)*

= Iﬁf% Lhs®+(1—h) 0§ — *]*f (s?) ds”
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where, M:F(Azdg ”*3>__F(A163 n+3)
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Therefore REF(&, s =MSE(s?)/MSE(&)
=[1-a-m Ly { —1—@@ ~1}(n—1) (1—h)%§: - L
QB -1 (- B - K] (14)
And the condition of REF (8}, s?)>1 can be easily obtained ;
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Now, we consider another shrinkage estimator of s?,
A, o8 A 2
hs?+(1—h) ot , 100 g2 L2200
[ﬁ:{ R ¢ n—1 41 (16)
S , otherwise
If h=1, then ¢® always reduces to s?, and if 2=0, then ¢? reduce to
Aiod Az
2 2
&={% n=155 ] (17)
s . otherwise
We regards & as a preliminary estimator,
Then in eq, (12), E(5) =o*—c*K — giL
So Bias (&)=0¢L — K
and eq, (13},
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In eq, (13), to obtain the value of # which minimize MSE, we differentiate MSE (&) with
respect to A, putting it equal to zero,
Then we get ;

h= - oi- 0’63] - L+[o*—0°ci] - K

(19)
2tlet Mot L~207 f - K

Again differentiating MSE (&) with respect to k, we get



2{(n+1)/(n- 1)} Mo*+20¢—40°02 (20)

This form will be always positive, (It is proved by Pandey(1980)). Hence the value of % in ¢q,
(19) will give the minimum MSE, And in eq, (19) if K=L=M =1, which means we always use
&= hs*+ (1—h) 6¢ for estimating ¢ the value of 2 which minimizes the MSE(4?) is given by

2 ay2

h= ___(..Q_ - g\)‘%(;‘r (21)
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In this form, % contains unknown parameter ¢2, so the value of 4 may not be calculated, If we

replace ¢ by its consistent estimator s?, then it becomes

2

2 _ 2
=0 (22)
(s2— g2) + _2st
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Using the 4 we define a modified estimator in place of ¢? such as
oh=hs*+ (1- ) oé

=W (s*—a}) + 08

)
- ,"(0 254 +ob (23)
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Actually this shrunken estimator is defined in case of K=L=M=1, So we propose the

completed shrunken estimator,

2 2
a2 R's*+ (1—W) ot , _f;_lxv__ff_;gszs Az_(%
OzN:{ , n (24)
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where ,

K’, L', M’ are obtained by putting s? in place of * in A, L, M, But this proposed estimator
will be quite complicated one, So for simplicity we consider a modified estimator &% such zs
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Now we have shown that this estimator has higher relative efficienties than s?
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These integral in REF (&%, s®) can be evaluated by using quadrature formular, (c, f, . Numer-
ical Analysis)

So we have calculated the REF (543, s?) for different values of n, o¢/¢? and significant level
a, using sixteen points Gauss-Legendre formular for integral, The results are shown in Table

(L, @),

3. Conclusions

Recently shrinkage method which reduces mean square error are widly used in estimatior: of



Table |. The relative efficiencies of &% w.r,. to s® (@=0,01)

Y § 3 5 7 9 15 25
0,25 0.9174 0,3703 0. 8660 0, 8794 0. 9387 0, 9887
0. 50 1, 1854 1.0572 0.9712 0.9115 0. 8171 0, 7829
0,75 1. 7772 1. 6652 1. 5767 1. 4027 1. 3331 1. 1485
1.00 2.4299 2.2949 2.2319 2. 1950 2.1435 2.1125
1. 25 2. 6462 2. 2479 2. 0467 1. 1900 1. 6505 1. 3990
1.50 2. 6868 1. 7963 1. 5237 1. 3532 1. 0730 0, 8688
2,00 1.6371 1.1130 0, 9170 0, 8153 0. 6915 0.6431 !
3.00 0. 9058 0. 6668 0.6146 0. 6094 0, 6554 0. 7795
Table 2. The relative efficiencies of &% w.r to s* (a=0.05)
n
sl 3 5 7 9 15 25
0,25 0. 9355 0.9148 0.9191 0.9325 0,9723 0, 9962
0, 50 1. 0303 0.9674 0. 9204 0, 8873 0. 8379 0.9414
0,75 1. 1289 1. 2862 1. 2560 1.2222 1. 1292 1.0132
1.00 1. 6639 1,7315 1. 7601 1. 7756 1, 7993 1,8137
1.25 1. 9509 1. 9047 1. 8282 1. 7523 1. 4581 1, 3278
1.50 1.9919 1. 6821 1, 4681 1. 3155 1, 0411 0, 8337
2. 00 1, 5742 1. 1039 0. 9085 0.8031 0.6724 0, 6477
3.00 0. 9053 0. 6644 0. 6080 0. 5988 0. 6688 0.8753

parameter, If we have prior information for unknown parameter, this method is useful too:,
Thompson proposed a shrinkage estimator and said the estimator is useful if ¢¢ nears to ¢%, But
his estimator has arbitrary constant % between zero and one, So we considered the value of 4
which minimize MSE and proposed modified shrunken estimator, And we obtained the conditicn
that the proposed estimator can be used, Next, we calculated the relative efficiencies of this
modified testing estimator w,r to s2,

The result is that the proposed estimator has more relative efficiencies than s* when sample
size is small and 0,5< ¢%/0%< 1.5, So in estimation of normal variance, if sample size is small
and 0,5<0%/6°<1.5. then &% can be useful estimator in view of MSE, Finally, the region of
(A58 /(n—1) <s?2< (A.02)/(n—1) says the condition that &% can be used,
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