# THE RELATION BETWEEN THE EXTERIOR RADIUS AND THE MEAN CURVATURE OF BOUNDED IMMERSION 

Chong Hee Lee

In this paper, we study an estimate for the exterior radius of a complete manifold immersed in some ambient spaces. In [ Na ], Nash showed that any noncompact $n$-dimensional Riemannian manifold can be isometrically imbedded in a ball of preassigned radius $\varepsilon>0$ in $\mathbf{R}^{n+k}$ if the codimension $k$ is large enough. First Calabi asked whether there is any complete minimal surface of $\mathbf{R}^{3}$ which is a subset of the unit ball ([Ya] problem section $\sharp 91)$. The results in this direction without codimension assumption are of Aminov [Am], Jorge and Koutroufiotis [JK] and Jorge and Xavier [JX]. As a generalization of Jorge and Xavier [JX] we can prove the following.

Theorem 1. Let $M$ be a complete Riemannian manifold with scalar curvature $S$ that satisfies $S(x) \geq-C\left(1+r^{2}(x)\right)$ for some constant $C>0$ where $r(x)$ is the distance from a fixed point $x_{0} \in M$ to $x$ in $M$ and let $N$ be a complete Riemannian manifold with sectional curvature bounded from above by $\delta^{2}, \delta \geq 0$. For $y_{0} \in N$, let $B_{R}\left(y_{0}\right)$ be a closed geodesic ball of radius $R$ centered at $y_{0}$ in $N$ which does not intersect the cut locus of $y_{0}$. Suppose $u: M \rightarrow B_{R}\left(y_{0}\right) \subset N$ is an isometric immersion with bounded mean curvature $H$ (say $\|H\| \leq H_{0}$ ). Then the following holds
(a) if $\delta>0$ and $R<\frac{\pi}{2 \delta}, R \geq \frac{1}{\delta} \arctan \left(\frac{\delta}{H_{0}}\right)$
(b) if $\delta=0$ and $N$ is simply connected, $R \geq \frac{1}{H_{0}}$.

In order to prove the theorem, we need some lemmas.

Lemma 2 [Ka]. Suppose $M^{n}$ is isometrically immersed in $N^{m}$. If $f: N \rightarrow \mathbf{R}$, then

$$
\triangle_{M} f=\operatorname{tr}_{M}\left(\bar{\nabla}^{2} f\right)+n\left\langle H, \quad \operatorname{grad}_{N} f\right\rangle_{N}
$$

where $\bar{\nabla}$ is the Riemannian connection on $N$ and $H$ is the mean curvature vector of the immersion.

Lemma 3 [Ka]. Suppose $M$ is a complete Riemannian manifold with $\operatorname{Ric}(x) \geq-C\left(1+r^{2}(x)\right)$ for some constant $C>0$ where $r(x)$ denotes the distance from a fixed point $x_{0} \in M$ to $x$ in $M$. If $u: M \rightarrow \mathbf{R}$ and sup $u<+\infty$, then $\inf _{M} \Delta u \leq 0$.

Lemma 4. Suppose the sectional curvature on a closed geodesic ball $B_{R}\left(y_{0}\right)$ of radius $R$ centered at $y_{0}$ in $N$ which does not intersect the cut locus of $y_{0}$ is bounded above by 1 and $f(y)=1-\cos \rho(y)$ on $B_{R}\left(y_{0}\right)$ where $\rho(y)$ denotes the distance from a fixed point $y_{0} \in N$ to $y$ in $N$. Then $\nabla^{2} f \geq \cos \rho d s_{N}^{2}$ on $B_{R}\left(y_{0}\right)$.
Proof. Let $\bar{\rho}(y)$ be a distance from a fixed point $\overline{y_{0}} \in S^{m}$ to $y$ in the sphere $S^{m}$ of dimension $m$ with constant sectional curvature 1. Then

$$
\nabla_{S^{m}}^{2} \bar{\rho}=\frac{\cos \bar{\rho}}{\sin \bar{\rho}}\left[d s_{S^{m}}^{2}-d \bar{\rho} \otimes d \bar{\rho}\right]([G W], p .30)
$$

and so

$$
\begin{aligned}
\nabla_{S^{m}}^{2} g(\bar{\rho}) & =g^{\prime \prime}(\bar{\rho}) d \bar{\rho} \otimes d \bar{\rho}+g^{\prime}(\bar{\rho}) \nabla_{S^{m}}^{2} \bar{\rho} \\
& =(\cos \bar{\rho}) d \bar{\rho} \otimes d \bar{\rho}+\cos \bar{\rho}\left[d s_{S^{m}}^{2}-d \bar{\rho} \otimes d \bar{\rho}\right] \\
& =(\cos \bar{\rho}) d s_{S^{m}}^{2}
\end{aligned}
$$

where $g: \mathbf{R} \rightarrow \mathbf{R}$ is a function defined by $g(x)=1-\cos x$. The Lemma follows by applying the Hessian comparison theorem ([GW], p. 19).

Proof of theorem 1. (a) Without loss of generality we may assume $\delta=1$. First we show that $\operatorname{Ric}(x) \geq-\bar{C}\left(1+r^{2}(x)\right)$ for some constant $\bar{C}>0$. If $\left\{E_{i}\right\}_{i=1}^{n}$ is a local orthonormal frame for $M$, then we have the following identity, obtained from the Gauss equation by contraction:

$$
S(x)=\sum_{i \neq j}\left\langle\bar{R}\left(E_{i}, E_{j}\right) E_{j}, E_{i}\right\rangle+n\|H\|^{2}-\|B\|^{2},
$$

where $\|B\|^{2}$ is the square of the length of the second fundamental form of $M$. It follows that

$$
\begin{aligned}
\|B\|^{2}= & \sum_{i \neq j}\left\langle\bar{R}\left(E_{i}, E_{j}\right) E_{j}, E_{i}\right\rangle+n\|H\|^{2}-S(x) \\
& \leq n(n-1)+n H_{0}^{2}+C\left(1+r^{2}(x)\right) .
\end{aligned}
$$

Now for arbitrary plane $X \wedge Y \subset T_{p} M \subset T_{p} N$, the Gauss equation implies that

$$
\operatorname{Sec}_{M}(X \wedge Y)=\operatorname{Sec}_{N}(X \wedge Y)+\langle B(X, X), B(Y, Y)\rangle-\|B(X, Y)\|^{2}
$$

Thus

$$
\begin{aligned}
\left|\operatorname{Sec}_{M}(X \wedge Y)\right| & \leq\left|\operatorname{Sec}_{N}(X \wedge Y)\right|+\left|\langle B(X, X), B(Y, Y)\rangle-\|B(X, Y)\|^{2}\right| \\
& \leq 1+2\|B\|^{2} \leq C_{1}\left(1+r^{2}(x)\right)
\end{aligned}
$$

for some constant $C_{1}>0$. And so $\operatorname{Ric}(x) \geq-\bar{C}\left(1+r^{2}(x)\right)$ for some $\bar{C}>0$. Let $f(x)=1-\cos \rho(x)$ where $\rho(x)$ is the distance from $y_{0} \in N$ to $x$ in $N$. Then $f$ is $C^{\infty}$ on $B_{R}\left(y_{0}\right)$ by hypothesis. By lemmas 2 and 4 ,

$$
\begin{aligned}
\triangle_{M} f & =\operatorname{tr}_{M}\left(\bar{\nabla}^{2} f\right)+n\left\langle H, \operatorname{grad}_{N} f\right\rangle_{N} \\
& \geq n \cos \rho(x)+n \sin \rho(x)\langle H, \bar{\nabla} \rho\rangle_{N} \\
& \geq n \cos R-n H_{0} \sin R
\end{aligned}
$$

for all $x \in M$. Since $f$ is bounded on $M$, by lemma $3,0 \geq n \cos R-$ $n H_{0} \sin R$. The proof of (a) is complete.
(b) $[\mathrm{Ka}]$ Theorem 3.1.

Corollary 5. If $\left(M, d s^{2}\right)$ is a complete Riemannian manifold with scalar curvature $S$ that satisfies $S(x) \geq-C\left(1+r^{2}(x)\right)$ for some constant $C>$ 0 and $N$ is a complete Riemannian manifold with sectional curvature bounded above by a constant $\delta^{2}, \delta>0$, then for any $y_{0} \in N,\left(M^{n}, d s^{2}\right)$ cannot be isometrically minimally immersed in a closed geodesic ball $B_{R}\left(y_{0}\right)$ of radius $R<\frac{\pi}{2 \delta}$ in $N$ which does not intersect the cut locus of $y_{0}$.
Proof. For a minimal immersion, $H=0$ (i.e., $H_{0}=0$ ) and so the theorem 1 implies the corollary.

Remark 6. If the volume growth restriction is removed, such immersion exists. For example, Jones [Jo] constructed complete minimal surfaces entirely contained in balls of $\mathbf{R}^{4}$.

Remark 7. Our result is sharp as the following example shows. Let $S^{n}$ be the sphere of dimension $n$ with constant sectional curvature $K$. Then the inclusion map $i: S^{n-1} \rightarrow S^{n}$ as the equator is minimal, since $S^{n-1}$ is the totally geodesic submanifold of $S^{n}$. But $S^{n-1}$ lies in the closed ball of radius $\frac{\pi}{2 \sqrt{K}}$ centered at the north pole.

## References

[Am] J.Aminov, The exterior diameter of an immersed Riemannian manifold, Math. USSR. Sborn. 21(1973), 449-454.
[GW] R.E. Greene and H. Wu, Function theory on manifolds which possess a pole, Lecture Notes in Math. 699, Berlin, Heidelberg, New York, Springer-Verlag, 1979.
[Jo] P. Jones, A complete bounded complex submanifolds of $\mathbf{C}^{3}$, Proc. A.M.S. 76(1979), 305-306.
[JK] L.P. de M. Jorge and D. Koutroufiotis, An estimate for the curvature of bounded submanifolds, Amer. J. Math. 103(1981), 711-725.
[JX] $\qquad$ and F. Xavier, An inequality between exterior diameter and mean curvature of bounded immersions, Math. Z. 178(1981), 77-82.
[Ka] L. Karp, Differential inequalities on complete Riemannian manifolds and applications, Math. Ann. 272(1985), 449-459.
[Na] J. Nash, The embedding problem for Riemannian manifolds, Ann. of Math. 63(1956), 20-63.
[Ya] S.T. Yau, Problem section, in Seminar on Differential Geometry, Ann. Math. Stud. 102, 1982, 669-706.

Department of Mathematics, College of Natural Sciences, Seoul National University, Seoul 151, Korea

