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THE RELATION BETWEEN THE EXTERIOR 
RADIUS AND THE MEAN CURVATURE OF 

BOUNDED IMMERSION 

Chong Hee Lee 

1n this paper, 、.ve study an estimate for the exterior radius of a com­
plete manifold immersed in some ambient spaces. 1n [Na], Nash showed 
that any noncompact n- dimensional R.iemannian manifold can be iso­
mctrically imbedded in a ball of prcassigned radius F; > 0 in R n+k if the 
codimension k is largc enough. First Calabi asked whether there is any 
complete minimal smface of R 3 which is a subset of the unit ball ([Ya] 
problem section ~(1). The results in tl따 direction wi thout codimension 
assumption are of Aminov [Am], Jorge and Koutroufiotis [JK] and Jorge 
and Xavier [JX]. As a generalization of Jorge and Xavier [JX] 、~e can 
prove the following . 

Theore m 1. Let lv[ be a complete Riemannian manifold with Jcalar 
C11πlature S that JatiJfieJ S(x) 즈 -C( l+ l‘ 2(X)) for Jome conJtant C > 0 
where r(x) iJ the diJtance from a βxed point Xo E M to x in 111 and let 
N be a complete Riemannian manifold with Jectional curvature bounded 
from above by 62, 6 즈 o. For yo E N , let BR(yo) be a cloJed geodeJic ball 
of radiUJ R centered at yo in N ψhich doeJ not interJect the cut 10CUJ 
of ν。 SuppoJe 11 : M • ßR(yo) C N iJ an iJometric immerJion with 
bounded mean curvature H (JaY IIHII ~ Ho) . Then the following holdJ 

(a) ν6> 0 and R < 잃 ， R 즈 i arctan(뚫) 
(b) if 6 = 0 and N is Jir째ly connected, R 즈 파 · 

1n order to prove the theorem, 、ve need some lenm1as. 
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Lemma 2 [Ka] . Suppose Mn is isometrically immersed in Nm . 11 
f :N • R , then 

~Mf = t1‘M(당2J) +n(H， gmdNJ) N 

where V is the R iemannian connection on N and H is th e mean curva­
ture vector 01 the immersion 

Lemma 3 [Ka] . S따)pose M is a complete R iemannian manilold with 
Ric(x) 으 -C( l +,‘2(X)) lor some constant C > 0 1싸ere ,,( x) denotes 
the distance from a fixed point Xo E M to x in M. 11 u : M • R and 
supu < +∞， then inf ,\/ ~ u ::; O. 

Le l11111a 4 . Suppose the sec tional C1!rvature 0π a c/osed geodesic ball 
Bn(ν。 ) 01 radius R centered at Yo in N which does not intersect the cut 
locus 01 νo is bounded above by 1 and f(y) = 1 - cos p(ν) on B n(yo) 
where p(ν ) denotes the distance from a fix ed point yo E N to y in N 
Then V ‘ f ~ cos pds~ on Bn(yo) . 

Proof Let ρ(y) be a distance from a fixed point iio E sm t。 ν in the 
sphere sm of dimension m with constant sectional curvature 1. Then 

and so 

?SmP = 證[dSim - d,ö 0 d ,ö]( [G 

Vimg( ,ö) = g"( ,ö)d,ö 0 dρ + gl(a) ?;m P 
= (cos ,ö)d,ö 0 d,ö + cos ,ö[dsim - d ,ö 0 d,ö] 

= (cos ,ö)dsim 

where g: R • R is a function defined by g( x) = 1 - cos x . The Lemma 
follows by applying the Hessian comparison theorem ([GW] , p. 19). 

Prool 01 th eorem 1. (a) Without loss of generality we m ay assume Ó = 1 
First we show that Ric( x) 으 -0(1 + r2(x)) for some constant 강 > O. If 
{E; }:,:, is a local orthonormal frame for Al , then we have the following 
identity, obtained from the Gauss equation by contraction: 

s(x) = ε(R(E; ， Ej )E j , E;) + nllHII2 - IIBII2, 
;#] 
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where IIBII2 is the square of the length of the second fundament떠 form 
。fllι It follows that 

IIBII2 = ε(R(E‘’ Ej)Ej , E‘) + nll H I12 - S (x) 
i#i 

S 띠n - 1) + nHg + C(l + 7‘ 2(X )) 

Now for arbitrary plane X ^ Y C 과MC 과N， the Gauss equation 
implies that 

SeCM(X ^ Y ) = SeCN(X ^ Y) + (B(X ,X) ,B(Y, Y)) -II B (X , Y) 1I
2

‘ 

Thus 

ISeCM(X ^ Y)I :::; ISeCN(X ^ Y )I + I( B (X ,X) ,B (Y,Y )) -IIB(X,Y) 1I
21 

:::; 1 +2 I1 BII2:::; C,(l +r2(x)) 

for some constant C, > O. And so R ic(x) 으 0(1 + r2(x)) for some 
C > O. Let f(x) = 1 - cosp(x) where p(x) is the distance from yo E N 
to x in N. Then f is C∞ 。n BR( ν'0) by hypothesis. By lemmas 2 and 4, 

AAff = tTM(?2f) + n(H, gmdNf)N 

으 n cos p(x) + n sinp(x )(H , \!P)N 

> ncosR - nHosinR 

for all x E M. Since f is bounded on M , by lemma 3, 0 즈 ncosR -
nHo sin R. The proof of (a) is complete. 
(b) [K에 Theorem 3.1 

Corollary 5 . If (111, ds2) i.! a complete Riemannian manifold with .!calar 
curvature S that .!atüβe.! S(x) 즈 -C( l + r2(x)) for .!ome constant C > 
o and N i.! a complete Riemannian manifold with .!ectional curvature 
bounded above by a con.!tant 82, 8 > 0, tli• en for any yo E N , (1I1n , ds2) 
cannot be i.!ometrically minimally immer.! ed in a clo.!ed geode.!ic ball 
BR(ν0) of rad‘u.! R < 끓 in N which doe.! not intersect the cut locus 
of νo. 

Proof For a minimal immersion, H = 0 (i.e ., Ho = 이 때d so the theorem 
1 implies the corollary 

Remark 6. If the volume I!;rowth restriction is removed, such immersion 
exists. For example, J ones [ J이 constructed complete minimal surfaces 
entirely contained in balls of R '’ 
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Remark 7. Our result is sharp as the following example shows. Let sn 

be the sphere of dimension n with constant sectional curvature I<. Then 
the inclusion m a.p i ’ sn-l • sn as the equator is minimal, since sn- l is 

the totally geodesic submanifold of sn. But sn-l lies in the closed ball 

of radius 끓K centered at the north p이e 
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