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THE RELATION BETWEEN THE EXTERIOR
RADIUS AND THE MEAN CURVATURE OF
BOUNDED IMMERSION

Chong Hee Lee

In this paper, we study an estimate for the exterior radius of a com-
plete manifold immersed in some ambient spaces. In [Na], Nash showed
that any noncompact n—dimensional Riemannian manifold can be iso-
metrically imbedded in a ball of preassigned radius € > 0 in R"** if the
codimension k is large enough. First Calabi asked whether there is any
complete minimal surface of R? which is a subset of the unit ball ([Ya]
problem section §91). The results in this direction without codimension
assumption are of Aminov [Am], Jorge and Koutroufiotis [JK] and Jorge
and Xavier [JX]. As a generalization of Jorge and Xavier [JX] we can
prove the following.

Theorem 1. Let M be a complete Riemannian manifold with scalar
curvature S that satisfies S(z) > —C(1+r%(z)) for some constant C > 0
where r(z) s the distance from a fized point xo € M to x in M and let
N be a complete Riemannian manifold with sectional curvature bounded
from above by 6%, § > 0. For yo € N, let Br(yo) be a closed geodesic ball
of radius R centered at yo in N which does not intersect the cut locus

of yo. Suppose u : M — Bpg(yo) C N 1s an 1sometric immersion with
bounded mean curvature H (say |H| < Hy). Then the following holds
(a) if6 >0 and R < 5, R > § arctan(4-)

(b) if 6 =0 and N is simply connected, R > T{IK

In order to prove the theorem, we need some lemmas.
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Lemma 2 [Ka]. Suppose M" is isometrically immersed in N™. If
f:N =R, then

Apuf = tTM(_V_zf) +n(H, gradyf)n

where 57 1s the Riemannian connection on N and H is the mean curva-
ture vector of the immersion.

Lemma 3 [Ka]. Suppose M 1s a complete Riemannian manifold with
Ric(z) > —C(1 + r*(a)) for some constant C > 0 where r(z) denotes
the distance from a fized point xo € M toz in M. If u : M — R and
supu < 400, then infy; Au <0.

Lemma 4. Suppose the sectional curvature on a closed geodesic ball
Br(yo) of radius R centered at yo in N which does not intersect the cut
locus of yo is bounded above by 1 and f(y) = 1 — cosp(y) on Br(yo)
where p(y) denotes the distance from a fized point yo € N to y in N.
Then 7" f > cos pds% on Bpr(yo).

Proof. Let p(y) be a distance from a fixed point g € S™ to y in the
sphere S™ of dimension m with constant sectional curvature 1. Then

B cos _ =
Vinp = = g [ds}n — dp ® dp)([GW], p.30)

and so

Ving(p) = ¢"(p)dp®@dp+g'(p) Vsm P
= (cosp)dp @ dp + cos pldstm — dp @ dp)
= (cosp)dsinm

where g : R — R is a function defined by g(z) = 1 — cosz. The Lemma
follows by applying the Hessian comparison theorem ([GW], p. 19).

Proof of theorem 1. (a) Without loss of generality we may assume § = 1.
First we show that Ric(z) > —C(1 + r*(z)) for some constant C' > 0. If
{E:}™~, is a local orthonormal frame for M, then we have the following
identity, obtained from the Gauss equation by contraction:

S(z) = ;(R(Eian)Ej, E;) +n|H|? - ||B%,
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where ||B||? is the square of the length of the second fundamental form
of M. It follows that

IBI* = >_(R(Ei E;)E;, E;) + n||H|* — S(z)
i#]
< n(n- 1) +nH + C(1 + r¥(z)).

Now for arbitrary plane X AY C T,M C T,N, the Gauss equation

implies that

Secp(X AY) = Seen(X AY) + (B(X,X),B(Y,Y)) - ||B(X,Y)|*
Thus
|Secu(X AY)] < [Seen(X AY)| + [(B(X, X), B(Y,Y)) — [B(X, V)|
< 1+42||B|? < Ci(1+r(z))

for some constant C; > 0. And so Ric(z) > —C(1 4+ r*(z)) for some
C > 0. Let f(x) =1 — cosp(z) where p(z) is the distance from yo € N
toz in N. Then f is C* on Bg(yo) by hypothesis. By lemmas 2 and 4,

AVYS t?‘n!(@2f) + n(H, grady f)n
> ncosp(z) + nsinp(z)(H, Vp)n
> ncosR—nHysin R

for all x € M. Since f is bounded on M, by lemma 3, 0 > ncos R —
nHysin R. The proof of (a) is complete.
(b) [Ka] Theorem 3.1.

Corollary 5. If (M,ds?) is a complete Riemannian manifold with scalar
curvature S that satisfies S(a) > —C(1 + r*(z)) for some constant C >
0 and N 1s a complete Riemannian manifold with sectional curvature
bounded above by a constant 6, § > 0, then for any yo € N, (M™,ds?)
cannot be isometrically minimally immersed in a closed geodesic ball
Br(yo) of radius R < 7z in N which does not intersect the cut locus

26
of Yo-
Proof. For a minimal immersion, H = 0 (i.e., Hy = 0) and so the theorem
1 implies the corollary.

Remark 6. If the volume growth restriction is removed, such immersion
exists. For example, Jones [Jo] constructed complete minimal surfaces
entirely contained in balls of R".
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Remark 7. Our result is sharp as the following example shows. Let S™
be the sphere of dimension n with constant sectional curvature K. Then
the inclusion map 7 : S*~! — S™ as the equator is minimal, since S™~! is
the totally geodesic submanifold of S™. But S™! lies in the closed ball
of radius ﬁr centered at the north pole.
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