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CONDITIONS ON THE PROJECTIVE
CURVATURE TENSOR OF CONFORMALLY
FLAT RIEMANNIAN MANIFOLDS

J. Deprez*, W. Roter and L. Verstraelen

1. Introduction

In this paper we study conformally flat Riemannian manifolds satis—
fying one of the conditions P-Q =0,Q-P=0,P-R=0R-P =0and
P . P = 0, where R denotes the Riemann—Christoffel curvature tensor,
P the Weyl projective curvature tensor and () the Ricci endomorphism
and where the first tensor acts on the second as a derivation. Riemann-—
ian manifolds and submanifolds satisfying similar conditions have been
studied by various authors. For references, one can consult [3].

It was shown in [4] that each Riemannian manifold satisfying R-R = 0
also satisfies R - P = 0 and conversely. A classification of conformally
flat spaces satisfying R - P = 0 therefore reduces to a classification of
conformally flat spaces satisfying R - R = 0, which was done in [2] and
[9].

Concering the conditions P-Q =0, P-P=0,P-R=0and Q-P =0
we prove the following results.

Theorem 1. Let (MY, g) be a Riemann manifold for which C = 0,
(N > 3). Then the following assertions are equivalent:

(i) (MN,g) satisfies P-Q =0,

(i) (MN,g) satisfies P- P =0,

(iii) (MV,g) satisfies P- R = 0,

(iv) (MN, g) is a space of constant curvature.

Theorem 2. Let (MY, g) be a Riemannian manifold for which C = 0,
(N > 3). Then, (M",g) satisfies Q- P = 0 if and only if (M™,g) has
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constant curvature or 13 a simple conformally flat Riemannian manifold.

For simple (nearly) conformally flat Riemannian manifolds, see Sec-
tions 2 and 5.

2. Basic Formulas

Let (MY, g) be a (connected) N-dimensional Riemannian manifold,
(N > 3). In the following, X,Y and Z denote vector fields on MV, V
denotes the Levi Civita connection of (M¥, ¢), R the Riemann—Christoffel
curvature tensor, @ the (1,1)-tensor related to the Ricci tensor S by
9(QX,Y) = S(X,Y) for all X and Y, 7 = tr@Q the scalar curvature
and, finally, X A Y denotes the (1,1)-tensor defined by (X AY)Z :=
9(Z,Y)X — g(Z,X)Y. Then, Weyl’s conformal curvature tensor C and
Weyl’s projective curvature tensor P, are defined by

C(X,Y) = R(X,Y)- ﬁ(qx AY +XAQY)  (2.1)

_
Tty MY

and
PiX.Y) = RX.Y)~ F-l—-—l-(X AY)oQ,

respectively.

(MN, g) is called (locally) conformally flatif (MY, g) is (locally) con-
formally equivalent to EN. For N > 4, (M",g) is conformally flat if
and only if C' = 0. We recall that every surface is conformally flat and
that C' = 0 for every 3—-dimensional Riemannian manifold. Let D be the
tensor defined by

D(X,Y,Z) = (VxS)Y,Z)—(VyS)(X,2) (2.2)
1
—_—((X - Y,Z)—- (Y - X, Z)).
If N >4and C =0, then D =0. For N =3, (M",g) is conformally
flat if and only if D = 0. In general, (M", g) will be called nearly confor-
mally flatif D = 0. It is clear that conformally flat manifolds are nearly
conformally flat. The divergence of a (0,k)-tensor T on (M, g) is the
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(0,k — 1)-tensor 6T defined by (6T)(X,,---,Xs) := — LN (Ve T)(E;,

X2+, Xx), where {E,, E,,--+,EN} is a local orthonormal frame. A
Riemannian manifold is said to have harmonic curvature (respectively
harmonic Weyl (conformal) curvature tensor) if § R = 0 (respectively
§C = 0), [1]. The second Bianchi identity implies that (§R)(Z,X,Y) =
(VxS)Y,Z)—(VyS)(X,Z) and (6C)(Z,X,Y) = 2=2 D(X,Y,Z). Now
it is clear that manifolds with harmonic curvature are nearly conformally
flat. Moreover, a Riemannian manifold is nearly conformally flat if and
only if it has harmonic Weyl tensor in case N > 4 or if it is conformally
flat in case N = 3. (M",g) is called (locally) projectively flat if around
every point of M" there exists a mapping to EV preserving geodesics.
For N > 3, (MV,g) is projectively flat if and only if P = 0. Every
surface satisfies P = 0. (MY,g) will be called simple if rank Q < 1
everywhere on the manifold. (M¥,g) is Einstein if S is proportional to
g. It i1s well known that every surface is Einstein and that an Einstein
space satisfying C' = 0 is a space of constant curvature.

Let i : (MN,g) — (MN*',§) be an isometric immersion. Let £ be
a local normal section on :. Then the second fundamental tensor A of
i is defined by Vx¢ = —AX, where V is the Levi Civita connection of
(MN+13). The curvature tensors R of (MY, g) and R of (MN*!, §) are
related by the equation of Gauss: R(X,Y) = R(X,Y)+ AXAAY. iis
called totally umbilical if A is proportional to the identity map every-
where.

Let (B, gg) and (F, gr) be Riemannian manifolds and let f : B — R
be a (C*—) function on B. Then, the warped product (B, gg) xs (F,gr)
is the Riemannian manifold M := B x F furnished with the metric tensor
g :=m"(gg) + (f om)*0*(gr), where 7 is the projection B x F — B onto
the base and o is the projection B x F' — F onto the fiber. Denote by
X,Y and Z vector fields tangent to B and by U,V and W vector fields
tangent to F. The lift of a vector field on B, say X, to M is the unique
vector field of M that projects onto X and that is everywhere tangent
to the leaves, i.e. the submanifolds of M of the form B x {q}, where
g € F. We denote this new vector field also by X. The lift of a vector
field on F is defined and denoted in the same way. The submanifolds of
M of the form {p} x F, where p € B, are called fibers.

We will use the follwing formulas from [7], that express the Levi Civita
connection My, the Riemann—Christoffel curvature tensor Mg and the



156 J.Deprez, W.Roter and L.Verstraelen

Ricci tensor Mg of (M,g) in terms of the Levi Civita connections By
and Fy, the Riemann-Christoffel curvature tensors Br and Fg and the
Ricei tensors Bg and Fs of (B, ¢gp) and (F, gr) respectively:

vay is the lift of BVst

o
My,v = My, x = TfV,
norMy,w = —-qg‘c:,—mgradf,

tan My, w 1s the lift of Fy w,
Mpx,y)z 1is the lift of Bprxy)z,

HI(V,W
Mpwxy = —¥V,
Mpx,yyv = Mpww)x =0, (2.3)
V,W
Mpxvyw = g I )va(grad.f)a
rad f,grad
Mryvwy = Frvwyu — 909 -J;zg f)(V AW)U,

d .
Ms(x,y) = Bsx,y) — ?Hf(-’k,Y),
Mgxv)y=0
Mswwy = Fsww)-g(v,w) st
where tan is the projection of T{, .y M onto T\, ,({p} x F') and nor is the

projection of T{, M onto T, 4 (B % {q}), and where H/ is the Hes-
sian of f, d = dim F (assumed to be > 1) and where f! = %1 +(d -

1)1@#@& , Af being the Laplacian of f on B.

Let (M7, ¢) be a Riemannian manifold and let p € M”". In the following
z,y and z denote vectors in T,M. Let z A y denote the endomorphism
T,M — T,M : z — g¢g(z,y)z — g(z,z)y. Since @, is symmetric, there
exists an orthonormal basis {e;,es,---,en} of (T,M,g,) consisting of
eigenvectors of 4, i.e. such that

Qpei = Aiei, (2.4)

where )\; € R for eachi € {1,2,---,N}. f N >3and C = 0on (M",g),
then (2.1) and (2.4) imply that

R(e,', CJ') = aije; A e,
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P(e;,e;)er = bijr(6ire; — dire;),
where (2.5)
DA T
HWETIN-DN-2)
(N — 1)/\,‘ -I-(N-— 1)/\3’ — (N —2)Ak -7
" (N—=1)(N-2)

bijk =

for all 7,7 and k in {1,2,---,N}.

According to [6] and [8] there exist N continuous functions A; < A3 <
--+ < An such that for each p in M the eigenvalues of @}, are given by
A1(p), A2(p), - -+, AN(p). Moreover, if for each p, @, has distinct eigenval-
ues A\ (p) < Xa(p) < -++ < A(p) with multiplicities sy, g, ,s, inde-
pendent of p, then the functions Ay, Ag,- -, A, are differentiable. Then,
for each point p € M, there is an orthonormal frame {E;, E;,---, Eyx}
defined on a neighbourhood U of p such that all E;(q) are eigenvectors
of Qy(q € U).

Concerning the notations P+ @ = 0,-.+- we say for example that
(MN, g) satisfies P-Q = 0 if and only if P(X,Y) - Q = 0 for all vector
fields X and Y tangent to M, where P(X,Y) acts as a derivation on
the algebra of tensor fields on MV, i.e.

(P(X,Y)-Q)Z = P(X,Y)QZ - Q(P(X,Y)2)
for X,Y, Z tangent to M. By e.g. Q- P =0 we express that
(Q-P)(X,Y)Z :=QP(X,Y)Z-P(QX,Y)Z-P(X,QY)Z-P(X,Y)QZ =0
for all XY, Z tangent to M.

3. Proof of Theorem 1

The implications (iv)=>(1), (iv)=>(i1) and (iv)= (ii1) are trivial since
P = 0 if (M",g) is a space of constant curvature. The implication
(iii)=(i) follows from Lemma 2.1 (i) in [4]. Theorem 1 will thus be
proven if the implications (i)=>(iv) and (ii)=>(iv) are shown, which we
proceed to do next.

The implication (i)=(iv)
Suppose that (M", g) is a Riemannian manifold with C' = 0 and satis—
fying P-Q = 0. Take p € M and let {e1,€e2,---,en} be a basis for T,M
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satisfying (2.4). Using the formulas (2.5), we find that (P(e;,€;)-Q)ex =
bijk{ﬁkj(/\k — /\,-)e,- —ﬂkg(Ak o )\J—)e_,- for all i,j and k in {1, 2, s N} From
this it is easy to see that P-Q = 0 at p if and only if (P(e;, €;)-Q)e; = 0 for
all distinct ¢ and j in {1,2,---, N}, i.e. if and only if b;;;(A; — A;) = 0 for
all distinct 7 and j in {1,2,--+, N}. Interchanging i and j and subtracting
yields that all ); are equal at p. It follows that (M",g) is Einstein.
As (MV,g) also has C = 0, (M",g) is actually a space of constant
curvature.

The implication (ii)=-(iv)

Suppose that (M”",g¢) is a Riemannian manifold with C' = 0 and sat—
isfying P- P = 0. Take p € MV and let {e:,es,--,ex} be a basis
for T,MN satisfying (2.4). Using the formulas (2.5), we obtain from
(P(ei,ej)-P)(ei,ej)ex = 0 that b;;i(bik —bjkk) = 0 for all mutually distinct
1,7 and k in {1,2,--., N}. Interchanging i and j and subtracting yields
that all \; are equal at p. It follows that (M",g) is Einstein. Since also
C =0, (M",g) again is a space of constant curvature.

4. The Condition Q- P =0

Lemma 1. Let (MY,g) be a Riemannian manifold for which C =
0,(N > 3). Then the following assertions are equivalent:
(i) (MN,g) satisfies Q- P =0,
(i1) for each point p in M,Q, has one of the following forms;
(a) My with A € Ry,
A
(b) | +++ +ov eee with A € R.

On-1
Proof. Suppose that (MY, g) is a Riemannian manifold with C' = 0.
Take p € M and let {e1,e2,---,en} be a basis for T,M satisfying (2.4).
Using the formulas (2.5), we obtain that (Q - P)(e;,€;)ex = bijp{bix(Ai +
/\k)e_.,- — 6jk(’\j -+ /\k)e,-} for all Z,_] and k in {1,2,' sd ,N} From this it is
easy to see that @ - P = 0 at p if and only if (Q - P)(ei,e;j)e; = 0 for all
mutually distinct ¢ and 5 in {1,2,---, N}, i.e. if and only if

Aibiji =0 (4.1)

for mutually distinct 7 and j in {1,2,---,N}.




Conditions On The Projective Curvature 159

One of the implications in the lemma is now clear: if (), has one of the
forms described in (a) and (b) in the lemma, then Q - P = 0. Next, we
assume that (M", g) satisfies Q - P = 0. Interchanging i and j in (4.1),
subtracting and making use of formula (2.5), then yields that

(/\.‘ = AJ)(A. + AJ' i T) =0, (42)
Denote by Aj,Az,---, A, the mutually distinct eigenvalues of @, with
multiplicities sy, s5,- -, 8., respectively.

Suppose that » > 3. Choose mutually distinct indices a,f and 7 in
{1,2,---,r}. By (4.2), then A\, + A\g — 7 = 0 and Ao + A, — 7 =0, which
contradicts the fact that A\s # A,. Therefore, r = 1 or r = 2.

Suppose that » = 2. Taking : = 1 and j = N in (4.1) and (4.2),
one obtains that (s; — 1)A; = 0 and in the same way one finds that
(s —1)A; = 0. Since s; + s3 > 3, one of A\; and A, is zero, say Ay = 0.
Then s; = 1 and hence @, has the form described in (b) in the lemma.
Finally, if r = 1, then @, also has one of the desired forms.

Proof of Theorem 2
Suppose that (M”",g) is a Riemannian manifold satisfying C = 0 and
Q-P=0

Assume that there is a point p in M such that @, takes the form
described in (a) in the lemma. Call W the set of all such points and
let Wy be the connected component of W containing p. Wy is Einstein
and conformally flat and hence it has constant curvature. We will show
that in this case M = W;: since M is connected and W, is non—empty
and open, it is sufficient to prove that Wy is also closed. Suppose that
x € Wo. Take a sequence (z,).eN in Wy converging to z. A is a constant
on Wy. This gives, because of the continuity of the eigenvalue functions,
that Aj(z) = --- = An(z) = A # 0. Therefore z € Wj,.

If there is no point in M such that @ takes the form described in
(a) in the lemma, then by definition and by the same lemma, M is a
simple conformally flat Riemannian manifold. This proves one of the
implications. The other one is trivial.

5. Simple Nearly Conformally Flat and Simple Con-
formally Flat Manifolds

In this section we determine the structure of simple nearly confor-
mally flat manifolds and of simple conformally flat manifolds. First, we
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give examples and next we prove that these are essentially the only ones.

a. Examples

i. Suppose that gp is an Einstein metric on an open part F of RV~ in
case N > 3, and in case N' = 3 suppose that G is a metric of
constant curvature on F. Denote the scalar curvature of (F,gr)
by r and let f : B — R be a sloution of the differential equation

(N =2+ ff' = 5= (5.1)

which is nowhere zero, B being an open interval in R. Call gg the
metric (dz')? on B. Then the warped product (M, g) := (B, gp) X
(F, gr) is a simple nearly conformally flat manifold.

Indeed, easy computations using (2.3) and (5.1) show that

g 8, (n=-1)f"
S(a‘rl'lam])_— f E)
o ..
S(57:X) =0, (5.2)
S(X,Y)=0, and

D=0

(S in the Ricci tensor of (M,g), D is the tensor defined in (2.2)
and X and Y are tangent to the fibers) and it is clear from (5.2)
that rank Q = 1 everywhere if and only if f” is nowhere zero.

il. Keeping the same notations as before, if gr is a metric of constant
curvature and if N > 4, then (M, g) is a simple conformally flat
manifold. The fact that (M, g) satisfies C = 0 follows easily from
(2.1) and (2.3).

b. Theorem 3

We now prove the following result concerning the structure of simple
nearly conformally flat manifolds.

Theorem 3. Let (MY, g) be a simple nearly conformally flat manifold
and suppose that p is a point in (MVN,g) for which rank Q, = 1. Then
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there exists a neighbourhood of p which 18 isometric to a manifold of the
type described in 5.a.1.

Proof. Suppose that (MY, g) is a simple nearly conformally flat mani-

fold. Let p be a point in M for which rank @, = 1. Since the eigenval-

ue functions are continuous and since by assumption rank Q < 1 ev-
erywhere on M, there exists a neighbourhood V; of p on which rank
@ = 1 at every point. On V},Q has exactly two distinct eigenvalues
and therefore there is a neighbourhood V; C V; of p on which there
exists a differentiable function A and a differentiable local orthonormal
frame {E,, E;,---, E,} such that QE, = AE, and QE; = 0 for all ¢ in
{2,3,---,N}. It is clear that on V; 7 = A, where A is the scalar curva-

ture of (M, g). The eigenspaces of @ define (differentiable) distributions
T, ={X € TKL|QX = A\X} and T, = {X € TV,|QX = 0}. We use the
fact that D = 0 under the form

1

(VxQ)Y — (VyQ)X = 5(—1\',_—1)((3' T =¥ . 7)X) (5.3)
to obtain information about these distributions. In the following, X, X,
X,,--- denotes vector fields on V, with values in T} and Y,Y;,Y5,- -
denote vector fields on V; with values in T,. Then (5.3) yields that
-QY1, Y2 = -2-@‘-_—”((1", ‘A)Y;—(Y3-A)Y}). From this one easily concludes
that T, is involutive and that A is constant along the integral manifolds
of T;. Moreover, (5.3) implies that mv’_—l—(X A —(Q - M)V X =
—QV xY. The left hand side is a vector fiefd which has values in T, and
the second one in 7;. Hence, both of them are zero. QVxY = 0 gives
that

VxY has valuesin T;. (5.4)

It is now easy to see that Vx, X; always has values in 7). This im-
plies that the integral curves of T} are geodesics. Denote by (VyX),
and (VyX), the components of Vy X in T}, respectively in T,. From
2(—Nl_—ﬂ(X - A)Y — (Q — A)Vy X =0, one obtains that

(VyX)a= —ﬁ(x ‘I AY. (5.5)

Choose a system of coordinates ¢ : U — RM on a neighbourhood U C
V2 of p with coordinate functions zy,2s,---,z, such that the integral
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manifolds of T are given by the equation

I = as
rz3 = 4as
\ TN = an
and those of T; by
Ty =y

(ay,az,--+,ay € R) and such that p(U) = W; x W, ¢ R x RN,
where W, and W, are open rectangles 1n R, respectively in RV~'. Then
33 has values in 77 and 312, 323 cey a:

prec1sely, 1ts coordinate expression) is a function of z, only. We calculate
3%.-9(3,,, ygey) forall i € (2,3, ,.N}

17, o 0 7, a
6—J:.g(8—3:1’3—r1) 2g(6x1 vag 8.1'1

a d

—_— a
Oz, ¥ Ox;

have values in 7. A (more

)

= 2¢( )

= 0,

because V _s has values in T, (see (5.4)). We may therefore assume

8: a:r:,

1
that g(32-, 52 ) = 1, i.e. that E; = ;& and that

_ N
g=(dz,)* + ) gijdeidz;.

ti=2

Let ¢ be a point in U. We already know that the integral manifold
of Ty through ¢ is a geodesic. We study the integral manifold M,(q)
of T, passing through ¢ and the inclusion i, : M;(¢) — M. Denote
by V3, Rz, S3,-+- the connection, the curvature tensor, --- of M>(q).
E;, E5,---,EN is a local orthonormal frame for TM,(q) and E; is a
normal vector field on 2. (5.5) means that i, is totally umbilical :

0 =
(VE.Er)2 = (g~ 1n |A[T=D)E;. (5.6)
T

Denote by A the second fundamental tensor of i; with respect to the
normal E, call f = |A\|2¥-0 and a = ‘“'a% In f. Then

A=al. (5.7)
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For every i in {2,3,---, N}
N
Q?E.‘ — ZR2(E13EJ)EJ
=2

= i(R(E;,Ej)Ej + (AE; A AE;)E;) (5.8)

i=2

N
= Z R(E,', Ej)EJ‘ = R(Eis E, )El

i=1
N N
. Z g(E;, AE;)AE; — z g(E_.,-, AE,‘)AEJ'
=2 i=2
= QE; - R( E,',El E, + (N _ l)azE,- — azE,-

= ((N-1)a? —ST“)E,.

1

In the last step we used the fact that
R(E;, E\)E\ = Vg, Vg By — Vg VE E — Vig, g B = (— —o’)E;

(use (5.6)). (5.8) shows that M;(q) is an Einstein manifold :

Q2 = A1, (5.9)

where

B=(N—-1)a?-22
3:1:1
If N = 3, it follows from (5.9) and the fact that A is a funciton of z,
only that M,(gq) has constant curvature.
Now we show that all M,(¢q) are homothetic. First, using (5.6) one

obtains that

agij
b N S,
axl ag']
for all 7,5 € {2,3,---,N}.
Let g* := f~2¢g. Then
o _,
3:1

for all 4,5 € {2,3,---,N}.
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It is clear that ¢* determines a metric on W,, which we also denote by
¢*. This metric is also an Einstein metric since it is homothetic to the
restriction of g to M;(q). Denote the scalar curvature of ¢g* by r. Then

#
o
It is clear that f determines a function on Wi, which we also denote by
f. From (5.10), it follows that

(N =2)(fV+ff"=

(N-1)8 = (5.10)

¥
N-1

Furthermore, f is nowhere zero. It is now proven that (U, ¢g) is isometric
to a manifold of the type described in 5.a.1.

c. Theorem 4
In this section we prove the following results concerning the structure
of simple conformally flat manifolds.

Theorem 4. Let (MY, g) be a simple conformally flat manifold (N > 4)
and suppose that p is a point in (MY, g) for which rank Q, = 1. Then
there exists a neighbourhood of p which is isometric to a manifold of the
type described in 5.a.l.

Proof. Suppose that (M",g) is a simple conformally flat manifold. Let
p be a point in M for which rank @, = 1. By Theorem 3 there exists a
neighbourhood of p which is isometric to a manifold of the type described
in 5.a.i. We show that the restriction of g to each M;(q) has constant
curvature. In fact,

Ry(X,Y)Z = R(X,Y)Z+(AXANAY)Z
QXAY +XAQY rXAY
( N—2 T (N-1)(N-2)
2 (—(N_l)(N_2)+a2)(X/\Y)Z

for all X,Y and Z tangent to M(q).
This terminates the proof.

+AX A AY)Z

d. Some Corollaries

Corollary 1. Every simple nearly conformally flat manifold with con-
stant scalar curvature 1s Ricci-flat.
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Proof. Suppose that (M", g) is a simple nearly conformally flat manifold
with non-zero constant scalar curvature. We will deduce a contradiction.
From Theorem 3 it follows that we can restrict ourselves to the manifolds
described in 5.a.. Since the scalar curvature is non-zero, f” is nowhere
zero (see (5.2)). Moreover, since the scalar curvature is constant, it
follows from (5.2) that f'f” =.f"f. Differentiating (5.1) gives that
f'f”"=0. Since f” is nowhere zero, it follows that f’ = 0. Hence f” =0,
which gives the desired contradiction.

It is well known that there exist Einstein metrics which are not of cons—
tant curvature. Hence, in view of Corollary 1, Theorem 3 and Theorem
4, we get the following result.

Corollary 2. For each N > 4, there exist N -dimensional non-conformally
flat simple nearly conformally flat manifolds which are not of harmonic
curvature.
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