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CONDITIONS ON THE PROJECTIVE 
CURVATURE TENSOR OF CONFORMALLY 

FLAT RIEMANNIAN MANIFOLDS 

J. Deprez' , W. Roter and L. Verstraelen 

1. Introduction 

In this paper we study conformally flat lliemannian manifolds satis 
fying one of the conditions P . Q = 0, Q . P = 0, P . R = 0 R. P = 0 뻐d 

P . P = 0, where R denotes the lliemann- Christoffel curvature tensor, 
P the Weyl projective curvature tensor and Q the llicci endomorphism 
and where the first tensor acts on the second as a derivation. Riemann-
1없1 manifolds and submanifolds satisfying similar conditions have been 
studied by various authors. For references, one can consult [3]. 

It was shown in [4] that each Riemannian manifold satisfying R.R = 0 
also satisfies R . P = 0 and conversely. A classification of conformally 
flat spaces satisfying R . P = 0 therefore reduces to a classification of 
conformally flat spaces satisfying R . R = 0, which was done in [2] and 
[9] 

Concering the conditions p. Q = 0, p.p = 0, P.R = 0 and Q .p = 0 
we prove the foliowing results. 

Theore m 1. Let (MN ,g) be a Riemann manifold for which C = 0, 
(N 즈 3). Then the f ollowing aSJertions are equivalent: 

(i) (MN ,g) sati캠es p. Q = 0, 
(ii) (MN ,g) sat패es p. P = 0, 
(iii) (MN ,g) satisβes p. R = 0, 
(iv) (MN ,g) is a space of constant curvature 

T h eorem 2 . Let (MN ,g) be a Riemannian manifold for which C = 0, 
(N 즈 3). Then, (MN ,g) satisfies Q. P = 0 if and only ν (MN ,g) has 
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constant curvature or i3 a simple conformallν fiat Riemannian manifold. 

For simple (nearly) conformally flat R.iemannian manifolds, see Sec 
tions 2 and 5 

2. B asic For mulas 

Let (MN ,g) be a (connected) N - dimensional R.iemannian manifold, 
(N 즈 3). 1n the following , X, Y and Z denote vector fields on MN , \J 
denotes the Levi Civita connection of (!vfN , g) , R the R.iemann- Christoffel 
curvature tensor, Q the (1 ,1)- tensor related to the R.icci tensor S by 
g(QX, Y) = S(X, Y) for all X and Y , r = trQ the scalar curvature 
and, finally, X ^ Y denotes the (1 , 1)-tensor defiued by (X ^ Y)Z := 

g(Z , Y)X - g(Z,X)Y. Then, Weyl ’'s conformal curvature tensor C and 
Weyl ’'3 projective curvature tensor P , are defined by 

C(X,Y) := R(X, Y)-암2(QX ̂  Y + X ^ QY) 
T 

and 

respecti vely. 

+,." _' ''" _, X^ Y. (N -1)(N - 2) 

P(X, Y) := R(X, Y) - ,, 1 , (X ^ Y) 0 Q, 
N -1 

(2.1 ) 

(MN ,g) is called (locally) conformally βat if (MN, g) is (locally) con­
formally equivalent to E N For N ~ 4, (MN , g) is conformally fìat if 
and only if C = O. We recall that every surface is conformally fìat and 
that C = 0 for every 3- dimensional R.iemannian manifold. Let D be the 
tensor defined by 

D(X,Y ,Z):= (\JxS)(Y,Z)-( \JyS)(X,Z) (2 .2) 

n/ ,,1 , \ ((X. r)g(Y, Z) - (y. r)g(X, Z)) 
2(N - 1) 

If N ~ 4 and C = 0, then D = O. For N = 3, (MN ,g) is conformally 
fìat if and only if D = O. 1n general, (MN ,g) will be called nearly confor­
mally βat if D = O. It is clear that conformally fìat manifolds are nearly 
conformally fìat. The divergence of a (0, k)- tensor T on (M,g) is the 
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(0 , k - l)- tensor 8T defìned by (8T)(X2, ... ,X k ) := - ε~，(\7E.T)(Ei ， 
X 2, ... ,X k ) , where {E"E2 , .. . ,EN} is a local orthonormal frame. A 
R.iemannian manifold is said to have harmonic curvature (respectively 
harmonic Weyl (conform외) curvat1πe ten30r) if 8R = 0 (respectively 
8C = 0) , 띠 The second Bianchi identity implies that (8R)(Z ,X ,Y) = 
(\7x S)(Y,Z)-(\7I'S)(X,Z) and (8C)(Z ,X ,Y) = 쉽 D(X, Y, Z). Now 
it is clear that manifolds with harmonic curvature are nearly conformaJly 
flat. Moreover, a R.iemannian manifold is nearly conformaJly flat if and 
only if it has harmonic Weyl tensor in case N 즈 4 or if it is conformaJly 
flat in case N = 3. (MN ,g) is caJled (locaJly) projectively βat if around 
every point of M N there exists a mapping to E N preserving geodesics. 
For N 2: 3, (MN ,g) is projectively flat if and only if P = O. Every 
surface satisfies P = O. (MN ,g) will be called 3imple if rank Q ::; 1 
everywhere on the manifold. (MN ,g) is Ein ‘stein if S is proportionaJ to 
g. It is well known that every surface is Einstein and that an Einstein 
space satisfying C = 0 is a space of constant curvature. 

Let i : (MN ,g) • (ÛN+' , g) be an isometric immersion. Let ç be 
a local normaJ section on i. Then the 3econd fundamental ten30r A of 
i is defined by \7 xç = -AX, where \7 is the Levi Civita connection of 
(ÛN+1, g) . The curvature tensors R of (MN,g2 and R of (ÛN+' ,g) are 
related by the equation of Gauss: R(X, Y) = R(X, Y) + AX ̂  AY. i is 
caJled totally umbilical if A is proportional to the identity map every­
where 

Let (B , 9 B) and (F, 9 F) be Riemannian manifolds and let f : B • Rt 
be a (C∞-) function on B . Then, the warped product (B ,9B) xf (F,gF) 
is the R.iemannian manifold M := B X F furnished with the metric tensor 
9 := 1I""(gB) + (J 。 π)2 0" "(gF) ， where π is the projection B X F • B ont。
the ba3e and 0" is the projection B x F • F onto the fiber. Denote by 
X , Y and Z vector fields tangent to B and by U, V and W vector fields 
tangent to F. The I엠 of a vector field on B , say X , to M is the unique 
vector field of J.1 that projects onto X and that is everywhere tangent 
to the leave3 , i .e. the submanifolds of M of the form B x {q }, where 
q E F. We denote this new vector field aJso by X. The I엔 of a vector 
field on F is defined and denoted in the same way. The submanifolds of 
M of the form {p} x F , where p E B , are caJled βber3 

We will use the follwing formulas from [7], that express the Levi Civita 
connection Mv , the R.iemann- Christoffel curvature tensor J.1n and the 
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Ricci tensor Ms of (M ,g) in terms of the LeγCivita connections B 'V 
and F'V, the Riemann- Christoffel curvature tensors B R and FR and the 
Ricci tensors Bs and Fs of (B ,gB) and (F,gF) respectively: 

M 'V x Y is the lift of B 'V xY' 

X.f 
M 'V xv = M 'V vx =. jV, 

g(V, W) 
M 'V vw = "'j " 'gradf, 

tan 1\1'V vw is the lift of F'V vw, 

M쩌X，Y)Z is the lift of BR(X,y)Z , 

.... H !(V, W)" 
J쩌V，X)Y = f ι 

MR(x ,y)V = 1\1R(V,W)X = 0, (2.3) 
g(V, W) 

MR(x， v따 -T-Mvx(grgdf), 

g(grad f , grad f) 
1\1R(v,w)U = FR(V，씨u - >\J --j;' - - J ' (V ^ W)U, 

Ms(씨Ms(x，Y) = 0 

Ms(v,w) = Fs(v，w)_g(V，W)!ι 

where tan is the projection of T(p ,q)M onto T(p ,q) ( {p} x F) and nor is the 
projection of T(쩌)M onto T(p ,q)( B x {q}) , and where H! is the Hes-
Sl뻐 。f f , d = dimF (assurned to be > 1) 뼈d where p = ￥ + (d­

l)M뿔앨1J， 6.f being the Lapl때없 offonB 

Let (MN , g) be a Riemannian manifold and 1야 P E M N 1n the following 
x , ν and z denote vectors in 과1\1. Let x ^ y denote the endomorphism 
과M • Tp1\1 : z •• g(z , y)x - g(z , x)y. Since Qp is symmetric, there 
exists an orthonormal basis {el , e2 , ... , eN} of (강M， gp) consisting of 
eigenvectors of Ap, i.e. such that 

Qpei = Àiei , (2 .4) 

where Ài E Rfor each i E {1 , 2, ... ,N}. If N:::: 3 andC = 0 on (MN , g) , 
then (2.1) and (2.4) imply that 

R(ei , ej) = aije‘ ^ ej ’ 
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where 

P( ei , ej )ek = bijk( Ójke‘ - Óikej) , 

a;; = iN - 1 )(시 + 시)-7 
'J- (N-1)(N-2) 

b;;L. = iN -l)À‘ + (N - 1)시 - (N - 2)사 -7 
‘Jk -‘ (N - l )(N - 2) 

for all i ,j and k in {1 , 2,"', N} 

157 

(2.5) 

According to [6] and [8] there exist N continuous functions À1 :::; À2 으 
. .. :::; ÀN such that for each p in M the eigenvalues of Qp are given by 
시(p) ， 사 (p) ，' " , 서(p). Moreover, if for each p, Qp has distinct eigenval­
ues 시 (p) < 서(p) < ... < À,(p) with mu1tiplicities 51 ,52," ' , 5 , inde­
pendent of p, then the functions À 1, 시， . . . , À, are differentiable. Then, 
for each point p E M , there is an orthonormal frame {E1, E2 , .. . , E N} 

defined on a neighbourhood U of p such that 허1 Ei ( q) are eigenvectors 
of Qq(q E U). 

Concerning the notations P . Q = 0,' ‘ • we say for exam미e that 
(MN , g) satisfies P ‘ Q = 0 if and only if P(X,y). Q = 0 for 떠1 vector 
fields X and Y tangent to M N , where P(X, Y) acts as a derivation on 
the algebra of tensor fields on M N , i.e. 

(P(X , Y) . Q)Z = P(X, Y)QZ - Q(P(X, Y)Z) 

for X , Y, Z tangent to M. Bye.g. Q. P = 0 we express that 

(Q .P)(X ,Y)Z:= QP(X,Y)Z-P(QX ,Y)Z-P(X ,QY) Z-P(X,Y)QZ = 0 

for 외1 X , Y, Z tangent to M N 

3. Proof of Theorem 1 

The implications (iv)=추 (i ) ， (iv)=>(ii ) and (iv)=> (iii) are trivial since 
P 0 if (MN ,g) is a space of constant curvature. The implication 
(iii)=>(i) follows from Lemma 2.1 (i) in [4]. Theorem 1 will thus be 
proven if the implications ( i)=추 (iv) and (ii)=>(iv) are shown, which we 
proceed to do next. 

The implication (i)=>(iv) 
Suppose that (MN,g) is a Riemannian manifold with C = 0 and satis­
fying p. Q = O. Take p E M and let {e1 , e2 ,"', eN} be a basis for 과M 
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satisfying (2.4). Using the formulas (2.5), we find that (P (e‘, ej) ‘ Q )ek = 
bijd Ókj(샤 - Ài)ei - Ók;(Àk - 시)ej for all i ,j and k in {1, 2, ... , N} . From 
this it is easy to see that p.Q = 0 at p if and only if (P ( ei , ej ).Q)e‘ = Ofor 
허1 distinct i and j in {l , 2, ... , N} , i. e. if and only if b;j;(Àj - À;) = 0 for 
떠1 distinct i and j in {l , 2, ‘ . , N} . lnterchanging i and j and subtracting 
yields that all Ài are equal at p. It follows that (MN , g) is Einstein. 
As (M N,g) also has C = 0, (MN ,g) is actually a space of constant 
curvature. 

The implication (ii) =} (iv) 
Suppose t hat (MN ,g) is a lliemannian manifold with C = 0 and sat-
isfying P . P = O. Take p E ]lit N and let {e" e2 , . . . , eN} be a basis 
for 압MN satisfying (2 .4). Using the formulas (2.5) , we obtain from 
(P( e; ,ej) .P)(ei ,ej)ek = 0 that b‘j i( b;μ - bjkk ) = 0 for 혀1 mutually distinct 
i ,j and k in {l, 2, . ‘ , N}. Interchanging i and j and subtracting yields 
that 떠1 À‘ are equal at p. It folJows that (MN ,g) is Einstein ‘ Since als。
C = 0, (llit N , g) again is a space of constant curvature. 

4. The Condition Q . P = 0 

Lemma 1. Let (lliIN, g) be a Riemannian manifold for which C = 
O,(N 즈 3) . Th en the following assertions are equivalent: 

(i) (MN ,g) sati짜es Q . P = 0 , 
(ii ) for each point p in M , Qp has one of the following forms ; 

(어에a야) ÀlN w씨l 

I À 

(b) I ... ... . . . I ψith À E R. 

\ ON- l J 
Proof Suppose that (MN ,g) is a Riemannian manifold with C = O. 
Take p E M and let {et, e2 , ... , eN} be a basis for TpM sat isfying (2 .4). 
Using the formulas (2.5), we obtain that (Q . P )( e; , ej )ek = b;jd Ó;k(λ + 
Ak)e1 - 6μ(\ + 시)e‘} for 려1 i ,j and k in {l, 2, ... , N}. From this it is 
easy to see that Q . P = 0 at p if and only if (Q. P )(e; , ej)e; = 0 for 떠l 

mutually dist inct i and j in {1, 2, ... , N }, i.e. if and only if 

À;b;j‘ =0 ( 4.1) 

for mutually ctistinct i and j in {l , 2, . .. ,N} . 
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One of the implicaμ。ns in the lemma is now cleaε if Q. has one of the 
forms described in (a) and (b) in the lemma, then Q . p = O. Next , we 
assume that (MN ,g) satisfies Q. P = O. 1nterchanging i and j in (4.1) , 
subtracting and making use of formula (2.5), then yields that 

(시 - 시)(À;+ Àj - r) = O. (4.2) 

Denote by ~1 ， ~2 ，" " ~T the mutually distinct eigenvalues of Q. with 
multiplicities SI , S2 , ' . " S" respectively. 
Suppose that r 즈 3. Choose mutually distinct indices a ,ß and "y in 
{1 ,2,"., r}. By (4.2), then 사 + Àß - r = 0 and À" +시- r = 0, which 
contradicts the faεt that Àß ￥ 시. Therefore, r = 1 or r = 2 
Suppose that " = 2. Taking i = 1 and j = N in (4.1) and (4.2) , 
one obtains that (S1 - 1 )시 = 0 and in the same way one finds that 
(S2 - 1)사 = O. Since S1 + S2 으 3, one of 시 and À2 is zero, say 서 = O. 
Then SI = 1 and hence Q. has the form described in (b) in the lemma 
Fin혀ly， if r = 1, then Q. also has one of the desired forms. 

P r oof o f Theor em 2 
Suppose that (!l fN ,g) is a Riemannian manifold satisfying C = 0 때d 
Q.p= O. 

Assume that there is a point p in !lf such that Q. takes the form 
described in (a) in the lemma. Call W the set of all such points and 
let Wo be the connected component of W containing 1). Wo is Einstein 
and conformally flat and hence it has constant curvature. We will show 
that in this case !lf = l-l1o: since M is connected and Wo is non-empty 
and open, it is sufficient to prove that Wo is also closed. Suppose that 
x ε Wo. Take a sequence (Xn)nEN in H'o converging to x. À is a constant 
。n Wo. This gives, because of the continuity of the eigenvalue functions , 
that 시(X)='''=ÀN(X)=À 츄 O. Therefore X E Wo 

If there is no point in M such that Q takes the form descri bed in 
(a) in the lemma, then by definition and by the same lemma, M is a 
simple conformally flat Riemannian manifold. This proves one of the 
implications. The other one is trivial. 

5 . Simple N early Conforma lly Flat and Simple Con ­
formally Fla t M a nifolds 

1n this section we determine the structure of simple nearly confor­
mally flat manifolds and of simple conformally flat manifolds . First, we 
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give examples and next we prove that these are essentially the only ones 

a. Examples 

i. Suppose that gF is an Einstein metric on an open part F of R N-I in 
case N > 3, and in case N = 3 suppose that GF is a metric of 
constant curvature on F . Denote the scalar curvature of (F, gF) 

by r and let f : B • R be a sloution of the differential equation 

(N - 2)(J'? + f f" ="주­
N -1 

(5.1) 

which is nowhere zero, B being an open interval in R . Ca11 g8 the 
metric (dXI)2 on B. Then the warped product (M , g) := (B , 98) Xf 
(F, 9 F) is a simple nearly conformally flat manifold. 

lndeed, easy computations using (2.3) and (5.1) sh。、v that 

ð ð , (n-1)1" 
S( 0.-1 ' ~τ) = ---τ--

ðx l ’ Uι ’ 5(끓 ， X) = 0, 
5(X, Y) = 0, and 

D =0 

(5.2) 

(5 in the Ricci tensor of (M,g), D is the tensor defined in (2.2) 
and X and Y are tangent to the fib ers) and it is clear from (5.2) 
that rank Q = 1 everywhere if and only if 1" is nowhere zero. 

ii. Keeping the same notations as before, if gF is a metric of constant 
curvature and if N 으 4, then (M, g) is a simple conformally flat 
manifold. The fact that (M, g) satisfies C = 0 fo11ows easily from 
(2.1 ) and (2.3) . 

b. Theorem 3 

We now prove the fo11。、.ving result concerning the structure of simple 
nearly conformally flat manifolds 

Theorem 3. Let (MN ,g) be a simple nearly conformally βat manifold 
and sμ.ppose that p is a point in (MN ,g) for which rank Qp = 1. Th en 
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there exi3t3 a neighbourhood of p which i3 i30metric to a manifold of the 
type de3cribed in 5.a.i 

Proof. Suppose that (1I1N , g) is a simple nearly conformally fiat mani-
fold. Let p be a point in M for which rank Qp = 1. Since the eigenval 
ue functions are continuous and since by assumption rank Q ::; 1 ev 
erywhere on lIÆ, there exists a neighbourhood 까 of p on which rank 
Q = 1 at every point. On 끼 , Q has exactly two distinct eigenvalues 
and therefore there is a neighbourhood η c 까 。f p on which there 
exists a differentiable function À and a differentiable loc외 。rthonormal
frame {EI , E2 , ... ,En} such that QE1 = ÀEI and QE‘ = 0 for all i in 
{2, 3, - , N} ‘ It is clear that on ι r = À, where À is the scalar curva­
ture of (M,g). The eigenspaces of Q define (differentiable) distributions 
T1 = {X E T찌QX = ÀX} and 자 = {X E TV21QX = O}. We use the 
fact that D = 0 under the form 

(\7 xQ)Y - (\7 yQ)X = M ,,1 " ((X . r)Y - (Y . r)X) (5 .3 ) 
2(N -1) 

to obta.in information about these distributions. 1n the following, X , X] , 
X 2, . .. denotes vector fields on V2 with values in T1 and Y , Y" Y2, ‘ 

denote vector fields on ι with values in T2 • Then (5.3) yields that 
Q[}í，찍 = 꾀피((낀 À)Y2-(Y2 시낀)‘ From this one e잃ily concludes 

that T2 is involutive and that À is constant along the integTal manifolds 
。f T2. Moreover, (5.3) implies that 해피(X . À)Y - (Q - À) \71,X = 
-Q \7 x Y. The left hand side is a vector field which has values in T2 and 
the second one in 되. Hence, both of them are zero. Q \7 x Y = 0 gives 
that 

\7 x Y has values in T2 . (5 .4) 

It is now easy to see that \7 x , X 2 always has values in 낀 . This im-
plies that the integral curves of T1 are geodesics. Denote by (\7 y Xh 
and ( \7 yX )2 the components of \7yX in T1 , respectively in T2‘ From 
꾀피(X 시Y - (Q - À)\7 y X = 0, one obta.ins that 

(\7 y X)2= nI "l ，， (X.lnl시)Y. 
2(N - 1) 

(5.5) 

Choose a system of coordinates 'P : U -> R N on a neighbourhood U C 
η 。f p with coordinate functions x] , X2 , ... , X n such that the integTal 
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manifolds of T1 are given by t he equation 

2 

3 

N 

a 
a 

α
 

----= 2 

3 

N 

1 

z 

z 

/illl·-

<
lil-----

-

and those of 좌 by 
Xl = al 

(ah a2 ," ' , aN E R ) and such that cp(U) = W1 X W2 C R X R N-l , 
where W 1 and W 2 are open rectangles in R , respectively in R N - 1 • Then 
격- has values in T,’ and 격」 격- ’ ‘ ’ • !L have values in T? >- (more 8 Xl ............................ 06., .............. 8x'2 ’ 8X3' , 8XN ι \ 

precisely; its coordinate expression) is a function of Xl only. We calculate 
옳:g(옳， 옳r) for 려1 i E {2,3, ... ,N} 

ð . ð ð 
-g(-- ) 
ðx;" íJxl ’ ðXl 

. ð _ ð ‘ 

2g(값??끓값;) 
ι ð _ ð ‘ 

= 2a(~. \7 8 ~) 
J 、 ðX l ’ 강rδx1 / 

= 0, 

because ?a한옳7 has values in E (see (5.4))· We may therefore assume 

that g(옳， 옳) = 1, i.e. that E 1 = 옳 and that 

N 

9 = (dX l)2 + ε g;jdx‘dXj. 

Let q be a point in U. We already know that the integral manifold 
。f 되 through q is a geodesic. We study the integral manifold M 2(q) 
。f T2 passing through q and the iηmπ피c이h삐on z샤2 : M2(q예q띠)<-+→ M . Denote 
by 와， R2 , 52,'" the connection, the curvature tensor, ... of M2(q) 
E2' E3 , .. . ,EN is a local orthonormal frame for T Jl.12 ( q) and E 1 is a 
normal vector field on i2 . (5.5) means that i2 is tot떠ly UI뼈lical : 

(\7 E.E1)2 = (좌 ln 1>-1폐)E; 
uι1 

(5.6) 

Denote by A the second fundamental tensor of i 2 with respect to the 

normal El' c외1 f = 1시핸터 and a =-옳 lnf . Then 

A = aI . (5.7) 
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For every i in {2, 3,"' , N} 

N 

Q2E; = εR2(E; ， Ej)Ej 

N - ε(R(E; ， 직 )Ej + (AE‘ ^ AEj)Ej) 

N - ε R(E; ， Ej)Ej - R(E‘ , E) )E) 

λ’ N 

+ εy(EJ ， AEJ )AE， - ε g(Ej ， AE;)AEj 

= QE; - R(E; , EdE) + (N - l )ci E; - 하E; 

= ((N - 1)a2 
- 암)E; 

νιl 

1n the last step 、，ve used the fact that 

163 

(5.8) 

R(E‘’ E))E) = \1 E, \1 E,E) - \1E, \1 E,El - 야 Ed E) = (쌓 _ (2)E; 
vι1 

(use (5 .6)) . (5 .8) sho\Vs that M 2(q) is an Einstein manifold : 

where 

Q2 = ß I , 

β = (N - 1)a2 
- 정뜨 

νι1 

(5.9) 

1f N = 3, it follows from (5.9) and the fact that À is a funciton of X l 

。nly that M 2 ( q) has constant curvature. 
Now we show that all A1iq) are homothetic. First, using (5 .6) one 
obtains that 

for all i ,j E {2, 3,"' , N} 
Let g* := f-2g. Then 

for aIl i ,j E {2, 3," ' , N} ‘ 

8g;; 
τ-" = -:t.agij 
OX) 

8gij n 

8Xl 
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It is clear that g* determines a metric on W 2, which we also denote by 
ψ This metric is also an Einstein metric since it is homothetic to the 
restriction of 9 to M 2( q). Denote the sc혀ar curvature of g* by r . Then 

(N-1)ß= 츄 (5. 10) 

It is clear that f determines a function on H1" which we also denote by 
f. From (5. 10), it follows that 

(N - 2)(J ')2 + f 1" = "r , 
N-1 

Furthermore, f is nowhere zero. It is now proven that (U, g) is isometric 
to a manifold of the type described in 5.a.i. 

c. Theorem 4 
1n t his section we prove the following results concerning the structure 

。f simple conformally flat manifolds. 

Theorem 4. Let (MN ,g) be a .l imple conformally βat manifold (N ~ 4) 
and .lμ.ppOile that p Ìil a poiπt in (MN ,g) for ψhich rank Qp = 1. Then 
there exiiltil a neighbourhood of p which iIl iilometri c to a manifold of the 
type deilcribed in 5.a.ii 

Proof Suppose that (MN ,g) is a simple conformally flat manifold. Let 
p be a point in M for which rank Qp = 1. By Theorem 3 there exists a 
neighbourhood of p which is isometric to a manifold of the type described 
in 5.a.i. We show that the restriction of 9 to each M2(q) has constant 
curvature. 1n fact , 

R2(X , Y )Z = R(X , Y )Z + (AX ^ AY)Z 
- (QXAY+XAQY TX^Y 、

7:":---':-;-;-.. ;-:-----,_:70 + AX ̂  AY) Z N - 2 (N -l)(N - 2) , ._-_ . • _- , 

= (- , ,, "~，， ^' +(2
)(X ^Y)Z ‘ (N - l) (N - 2) 

for 려1 X ,Y and Z tangent to M 2(q) 
This terminates the proof. 

d. Some Corollaries 

Corollary 1. Everν ilimple nearly conformally fiat manifold with con. 

iltaπt ilcalar curvature iil Ricci- fiat. 
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Proof Suppose that (M N , g) is a sÎI째le nearly conformally f!at manifold 
with non- zero constant scalar curvature. We will deduce a contradiction 
From Theorem 3 it follows that we can restrict ourselves to the manifolds 
described in 5.a.i . Since the scalar curvature is non-zero, f" is nowhere 
zero (see (5.2)). Moreover, since the sc떠ar curvature is constant, it 
follows from (5.2) that 1'1" = -1''' f. Differentiating (5.1) gives that 
f'f" = O. Since f" is nowhere zero, it follows that l' = O. Hence f" = 0, 
which gives the desired contradiction. 

It is well known that there exist Einstein metrics which are not of cons 
tant curvature. Hence, in view of Corollary 1, Theorem 3 and Theorem 
4, we get the following result 

Corollary 2. For each N 즈 4 , there exist N -dimensional non-conformally 

βat simple nearly conformally βat manifolds ψhich are not of harmonic 

curvat'ure. 
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