SEPARATION AXIOMS BETWEEN $T_{\frac{1}{2}}$ AND T_{0}

Josep Guia and Isabel Segura

1. Introduction

The well known axioms $T_{F}, T_{D}, T_{U D}$ and T_{O} admit characterizations of the form "for arbitrary points x, y of the space, if y belongs to the derived set of $\{x\}$ then \cdots ". We present here all the axioms obtained by postulating, in the consequent of the above conditional expression, the enunciative forms that may be constructed from conjunctions (\wedge) and disjuntions (V) of the following statements concerning the derived sets of $\{x\}$ and $\{y\}$ the derived set of $\{x\}$ is a closed set (" $d\{x\} c s$ "), or it is a union of disjoint closed sets (" $d\{x\} u d c s$ ") or it is a union of closed sets (" $d\{x\} u c s$ ") ; and the derived set of $\{y\}$ is empty (" $d\{y\}=\emptyset$ "), or it is closed ("d\{y\}cs"), or it is a union of disjoint closed sets (" $d\{y\} u d c s "$), or it is a union of closed sets (" $d\{y\} u c s$ ").

On the other hand, it is known that the shortest characterization, in terms of derived sets of points, of $T_{D^{-}}$-spaces (i.e. "for every point x of the space, $d\{x\} c s$ ") and that of $T_{O^{-}}$-spaces (i.e. "for every point x of the space, $d\{x\} u c s "$) remains valid if we substitute the arbitrary point x by an arbitrary subset A of the space. This propriety is also true for all the statements of T_{D} and T_{O} presented here; we express this fact by $T_{D}^{A}=T_{D}$ and $T_{O}^{A}=T_{O}$. However, this is not valid for all the other axioms treated in this paper, that is, $T_{\alpha}^{A} \neq T_{\alpha}(\alpha=$ $F D, F, H G, H U D, H, G, F U D, I U H, I, U D, K U H, K J, K, U H, J$ and $U I)$. Nevertheless, we study some axioms of the form T_{α}^{A} and obtain new characterizations of $T_{\frac{1}{2}}$-spaces.

2. New separation axioms

Proposition 2.1. A topological space (X, τ) is a T_{D}-space iff one of the following conditions holds:

1) for every $x \in X, d\{x\} c s$. [1]
2) for arbitrary $x, y \in X, y \in d\{x\}$ implies $d\{x\}$ cs.
3) for arbitrary $x, y \in X, y \in d\{x\}$ implies $(d\{x\} c s \wedge d\{y\} c s)$.
4) for arbitrary $x, y \in X, y \in d\{x\}$ implies $(d\{x\} c s \wedge d\{y\} u d c s)$.

Proof. Implications $(1 \Rightarrow 2),(3 \Rightarrow 4)$ and $(4 \Rightarrow 1)$ are immediate.
$(2 \Rightarrow 3)$ Let x belong to X. If $d\{x\}=\emptyset$, then condition 3 holds. If $d\{x\} \neq \emptyset$, then $d\{x\}$ is a closed set and, for every point y in $d\{x\}$, if $d\{y\}$ is not empty it is a closed set from condition 2.

Proposition 2.2. A topological space (X, τ) is a $T_{U D-s p a c e ~ i f f ~ o n e ~ t h e ~}^{\text {- }}$ following conditions holds :

1) for every $x \in X, d\{x\} u d c s$. [1]
2) for arbitrary $x, y \in X, y \in d\{x\}$ implies $d\{x\} u d c s$.
3) for arbitrary $x, y \in X, y \in d\{x\}$ implies $(d\{x\} u d c s \vee d\{y\}=\emptyset)$.
4) for arbitrary $x, y \in X, y \in d\{x\}$ implies $(d\{x\} u d c s \wedge d\{y\} u d c s)$.
5) for arbitrary $x, y \in X, y \in d\{x\}$ implies $[d\{x\} c s \vee(d\{x\} u d c s \wedge$ $d\{y\} u d c s)]$.
6) for arbitrary $x, y \in X, y \in d\{x\}$ implies $[(d\{x\} u d c s \vee d\{y\}=$ $\emptyset) \wedge d\{y\} u d c s)]$.
7) for arbitrary $x, y \in X, y \in d\{x\}$ implies $[(d\{x\} c s \vee d\{y\} u d c s) \wedge$ $(d\{x\} u d c s \vee d\{y\}=\emptyset)]$.
Proof. It is immediate.
Definition 2.3. A topological space (X, τ) will be called a $T_{H^{-}}$space if for arbitrary $x, y \in X, y \in d\{x\}$ implies $d\{y\}$ cs.

Definition 2.4. A topological space (X, τ) will be called a $T_{U H}$-space if for arbitrary $x, y \in X, y \in d\{x\}$ implies $d\{y\} u d c s$.

Definition 2.5. A topological space (X, τ) will be called a T_{I}-space if for arbitrary $x, y \in X, y \in d\{x\}$ implies ($d\{x\} c s \vee d\{y\} c s$).

Definition 2.6. A topological space (X, τ) will be called a $T_{U I}$-space if for arbitrary $x, y \in X, y \in d\{x\}$ implies ($d\{x\} u d c s \vee d\{y\} u d c s$).

Proposition 2.7. A topological space (X, τ) is a T_{F}-space iff one of the following condition holds:

1) for arbitrary $x, y \in X, y \in d\{x\}$ implies $d\{y\}=\emptyset$. [1]
2) for arbitrary $x, y \in X, y \in d\{x\}$ implies $(d\{x\} u d c s \wedge d\{y\}=\emptyset)$.

Proof. Implication $(2 \Rightarrow 1)$ is immediate.
$(1 \Rightarrow 2)$ Let x belong to X. If $d\{x\}=\emptyset$, then condition 2 holds. If $d\{x\} \neq$ \emptyset, then for every y in $d\{x\}, d\{y\}=\emptyset$ as a consequence of condition 1 and consequently $d\{x\}$ consists of closed points.

Proposition 2.8. In a topological space (X, τ) the following conditions are equivalent and, if they hold, the space will be called a T_{G}-space:

1) for arbitrary $x, y \in X, y \in \cdot d\{x\}$ implies $(d\{x\} c s \vee d\{y\}=\emptyset)$.
2) for arbitrary $x, y \in X, y \in d\{x\}$ implies $[(d\{x\} c s \wedge d\{y\} u d c s) \vee$ $d\{y\}=\emptyset]$.
3) for arbitrary $x, y \in X, y \in d\{x\}$ implies $[d\{x\} c s \vee(d\{x\} u d c s \wedge$ $d\{y\}=\emptyset)$].
4) for arbitrary $x, y \in X, y \in d\{x\}$ implies $[(d\{x\} c s \wedge d\{y\} u d c s) \vee$ $(d\{x\} u d c s \wedge d\{y\}=\emptyset)]$.

Proof. Implications $(4 \Rightarrow 3)$ and $(2 \Rightarrow 1)$ are immediate.
$(3 \Rightarrow 2)$ Let x belong to X. If $d\{x\}=\emptyset$, then condition 2 holds. If $d\{x\} \neq \emptyset$ and, for every point y in $d\{x\}, d\{y\}=\emptyset$, then condition 2 is true. If there is a point y in $d\{x\}$ such that $d\{y\} \neq \emptyset$, then $d\{x\}$ is a closed set and $d\{y\}$ is a union of disjoint closed sets.
$(1 \Rightarrow 4)$ Let x belong to X. If $d\{x\}=\emptyset$, then condition 4 holds. If $d\{x\} \neq \emptyset$ and for every point y in $d\{x\}, d\{y\}=\emptyset$, then $d\{x\}$ is a union of closed points and consequently condition 4 is true. If there exists a point y in $d\{x\}$ such that $d\{y\} \neq \emptyset$, then $d\{x\}$ is a closed set and either $d\{y\}$ is a closed set or it is a union of closed points.

Definition 2.9. A topological space (X, τ) will be called a $T_{K^{-}}$space if for arbitrary $x, y \in X, y \in d\{x\}$ implies ($d\{x\} u d c s \vee d\{y\} c s$).

Definition 2.10. A topological space (X, τ) will be called a T_{J}-space if for arbitrary $x, y \in X, y \in d\{x\}$ implies $(d\{x\} c s \vee d\{y\} u d c s)$.

Definition 2.11. A topological space (X, τ) will be called a $T_{F D}$-space if for arbitrary $x, y \in X, y \in d\{x\}$ implies $(d\{x\}$ cs $\wedge d\{y\}=\emptyset)$.

Proposition 2.12. In a topological space (X, τ) the following conditions are equivalent and, if they hold, the space will be called a $T_{H G}$-space:

1) for arbitrary $x, y \in X, y \in d\{x\}$ implies $[(d\{x\} c s \wedge d\{y\} c s) \vee d\{y\}=$ Ø].
2) for arbitrary $x, y \in X, y \in d\{x\}$ implies $[(d\{x\} c s \wedge d\{y\} c s) \vee$ $(d\{x\} u d c s \wedge d\{y\}=\emptyset)]$.

Proof. Implication $(2 \Rightarrow 1)$ is immediate.
$(1 \Rightarrow 2)$ Let x belong to X. If $d\{x\}=\emptyset$, then condition 2 holds. If $d\{x\} \neq \emptyset$ and for every point y in $d\{x\}, d\{y\}=\emptyset$, then $d\{x\}$ is a union of closed points and consequently condition 2 is true. If there exists a point y in $d\{x\}$ such that $d\{y\} \neq \emptyset$, then $d\{x\}$ is a closed set and $d\{y\}$ is a closed set as a consequence of condition 1 .

Proposition 2.13. In a topological space (X, τ) the following conditions are equivalent and, if they hold, the space will be called a $T_{H U D}$-space:

1) for arbitrary $x, y \in X, y \in d\{x\}$ implies $(d\{x\} u d c s \wedge d\{y\} c s)$.
2) for arbitrary $x, y \in X, y \in d\{x\}$ implies $[(d\{x\} u d c s \wedge d\{y\} c s) \vee$ $d\{y\}=\emptyset]$.
Proof. Implication ($1 \Rightarrow 2$) is immediate.
$(2 \Rightarrow 1)$ Let x belong to X. If $d\{x\}=\emptyset$, then condition 1 holds. If $d\{x\} \neq \emptyset$ and for every point y in $d\{x\}, d\{y\}=\emptyset$, then $d\{x\}$ is a union of closed points. If there exists a point y in $d\{x\}$ such that $d\{y\} \neq \emptyset$, then $d\{x\}$ is a union of disjoint closed sets and $d\{y\}$ is a closed set as a consequence of condition 2 .

Proposition 2.14. In a topological space (X, τ) the following conditions are equivalent and, if they hold, the space will be called a $T_{\text {IUD-space: }}$

1) for arbitrary $x, y \in X, y \in d\{x\}$ implies $[d\{x\} c s \vee(d\{x\} u d c s \wedge$ $d\{y\} c s)]$.
2) for arbitrary $x, y \in X, y \in d\{x\}$ implies $[(d\{x\} c s \wedge d\{y\} u d c s) \vee$ $(d\{x\} u d c s \wedge d\{y\} c s)]$.
3) for arbitrary $x, y \in X, y \in d\{x\}$ implies $[(d\{x\} c s \vee d\{y\} c s) \wedge$ $(d\{x\} u d c s \vee d\{y\}=\emptyset)]$.
4) for arbitrary $x, y \in X, y \in d\{x\}$ implies $[(d\{x\} c s \wedge d\{y\} u d c s) \vee$ $(d\{x\} u d c s \wedge d\{y\} c s) \vee d\{y\}=\emptyset)]$.
Proof. Implication $(2 \Rightarrow 1)$ is immediate.
$(4 \Rightarrow 3)$ Let x belong to X. If $d\{x\}=\emptyset$, then condition 3 holds. Let y be a point in $d\{x\}$, if $d\{y\}=\emptyset$, then condition 3 is true and if $d\{y\} \neq \emptyset$, then either $(d\{x\} c s \wedge d\{y\} u d c s)$ or $(d\{x\} u d c s \wedge d\{y\} c s)$; in any case condition 3 is verified.
$(3 \Rightarrow 2)$ Condition 3 implies trivially that the derived set, $d\{x\}$, of every point x in X is a union of disjoint closed sets.

Let x belong to X. If $d\{x\}=\emptyset$, then condition 2 is true. If y is a point in $d\{x\}$, both $d\{x\}$ and $d\{y\}$ are unions of disjoint closed sets and,
by condition 3 , either $d\{x\}$ or $d\{y\}$ is a closed set, therefore condition 2 holds.
$(1 \Rightarrow 4)$ Let x belong to X. If $d\{x\}$ is not a closed set then, it is a union of disjoint closed sets and, for every point y in $d\{x\}, d\{y\}$ is a closed set. If $d\{x\}$ is a non-empty closed set, for every point y in $d\{x\}$, $d\{y\}$ is a closed set or it is a union of disjoint closed sets by condition 1 . Therefore in any case condition 4 is verified.

Definition 2.15. A topological space (X, τ) will be called a $T_{I U H}$-space if for arbitrary $x, y \in X, y \in d\{x\}$ implies $[(d\{x\} c s \wedge d\{y\} u d c s) \vee d\{y\} c s]$.

Definition 2.16. A topological space (X, τ) will be called a $T_{K U H}$-space if for arbitrary $x, y \in X, y \in d\{x\}$ implies $[(d\{x\} u d c s \wedge d\{y\} u d c s) \vee$ $d\{y\} c s]$.

Definition 2.17. A topological space (X, τ) will be called a $T_{K J}$-space if for arbitrary $x, y \in X, y \in d\{x\}$ implies $[(d\{x\} c s \vee d\{y\} u d c s) \wedge$ $(d\{x\} u d c s \vee d\{y\} c s)]$.

Proposition 2.18. A topological space (X, τ) is a T_{0}-space iff one of the following conditions holds :

1) for every $x \in X, d\{x\}$ ucs. [1]
2) for arbitrary $x, y \in X, y \in d\{x\}$ implies $d\{x\}$ ucs.
3) for arbitrary $x, y \in X, y \in d\{x\}$ implies $d\{y\} u c s$.

Proof. Implications $(1 \Rightarrow 2)$ and $(2 \Rightarrow 3)$ are immediate.
$(3 \Rightarrow 1)$ Let x belong to X. If $d\{x\}$ is not a union of closed sets, there is a point y in $d\{x\}$ such that $\{\bar{y}\}=\{\bar{x}\}$. Therefore x belongs to $d\{y\}$ and, since $d\{y\}$ is a union of closed sets from the hypothesis, $d\{x\} \subseteq d\{y\}$ against the fact that $y \in d\{x\}$. newpage

3. Relations among these axioms

Proposition 3.1.

Proof. It becomes immediate by comparing their respective chracterizations.

We give now a list of examples to prove that all these classes of topological spaces are different. In all the examples X is the set of real numbers and it is understood that the null set and the set X are closed.

Example 3.2. Let the sets $[x,+\infty[(x \in \mathbf{R})$ and $] x,+\infty[(x \in \mathbf{R})$ be closed. This space is T_{D} but not T_{F}.

Example 3.3. Let the sets $\mathbf{R} \backslash\{0\},\{x\}(x \neq 0 ; x \neq 1)$ and their finite unions, be closed. This space is T_{G} but not T_{H}.

Example 3.4. Let the sets $\{x\}(x \in \mathbf{R} \backslash \mathbf{Z}),] x-1, x](x \in \mathbf{Z} ; x>0)$, $[x, x+1[(x \in \mathbf{Z} ; x<0)$ and their finite unions, be closed. This space is $T_{U D}$ but not T_{I}.

Example 3.5. Let the sets $[-1,1],\{x\}(-1 \leq x \leq 1 ; x \neq 0),[-1,1] \cup\{x\}$ $(x \neq 2)$ and their finite unions, be closed. This space is $T_{U H}$ but not T_{K}.

Example 3.6. Let the sets $\left[x,+\infty\left[(x \in \mathbf{R})\right.\right.$ be closed. This space is T_{0} but not $T_{U I}$.

Example 3.7. Let the sets $\{x\}(x \neq 0)$ and their finite unions be closed. This space is T_{F} but not T_{D}.

Example 3.8. Let the sets $\{x\}(x>0),\{-x, x\}(x>0)$ and their finite unions, be closed. This space is $T_{H U D}$ but not T_{G}.

Example 3.9. Let the sets $[x, x+1[(x \in \mathbf{Z})] y,, x+1[(x \in \mathbf{Z} ; x<y<$ $x+1)$, $[y, x+1[(x \in \mathbf{Z} ; x<y<x+1)$ and their finite unions, be closed. This space is T_{H} but not $T_{U D}$.

Example 3.10. Let the sets $R \backslash\{-1\},\{0\},\{0, x\}(x \neq-1 ; x \neq 1)$ and their finite unions, be closed. This space T_{I} but not $T_{U H}$.

Example 3.11. Let the sets $] x-1, x](x \in \mathbf{Z} ; x>0),[x, x+1[(x \in \mathbf{Z}$ $; x<0),\left\{x+\frac{1}{2}, y\right\}(x \in \mathbf{Z} ; x<y<x+1)$ and their finite unions, be closed. This space is T_{K} but not T_{J}.

4. T_{α}^{A}-axioms

In the above classes of topological spaces, T_{α}, it is easy to prove that their respective characterizations remain equivalent if we change in their statements the arbitrary point x of X for an arbitrary subset A of X. The corresponding classes of spaces obtained in this way will be denoted by T_{α}^{A}-spaces. It is clear that $T_{\alpha}^{A} \subseteq T_{\alpha}$ and $T_{\alpha} \subseteq T_{\beta}$ implies $T_{\alpha}^{A} \subseteq T_{\beta}^{A}$.

In the following, we give some new characterizations of $T_{\frac{1}{2}}, T_{D}, T_{U D}$ and T_{0}-spaces in terms of T_{α}^{A}-spaces.

Definition 4.1. A topological space (X, τ) is a $T_{\frac{1}{2}}$-space if for every point x in X, either $\{x\}$ is open or closed.

Remark 4.2. $T_{\frac{1}{2}}$-space were introduced by Levine [4] in terms of the concept of generalized closed sets. Later, they have been studied by McSherry [5] under the name of $T_{E S}$-spaces; by Jah [3] under the name of T_{M}-spaces and by Dunham [2].

Proposition 4.3. $T_{\frac{1}{2}}=T_{F D}^{A}=T_{F}^{A}$.
Proof. It is immediate that $T_{F D}^{A} \subseteq T_{F}^{A}$.
If (X, τ) is a $T_{\frac{1}{2}}$-space, then it is $T_{D}[2]$ and therefore $d A$ is a closed set for every subset A of X. On the other hand, if y is a point in the derived set of a subset A of X, then $\{y\}$ is not open, and so $d\{y\} \neq \emptyset$. Hence (X, τ) is $T_{F D}^{A}$.

Let (X, τ) be a T_{F}^{A}-space and let x belong to X. If $x \notin d X$, then $\{x\}$ is open, and if $x \in d X$, then $\{x\}$ is closed. Hence (X, τ) is $T_{\frac{1}{2}}$.
Proposition 4.4. $T_{D}=T_{D}^{A}=T_{H G}^{A}=T_{H U D}^{A}=T_{H}^{A}$.
Proof. It is known that $T_{D}=T_{D}^{A}$ [1].
It is immediate that $T_{D}^{A} \subseteq T_{H G}^{A} \subseteq T_{H U D}^{A} \subseteq T_{H}^{A}$.
Let (X, τ) be a T_{H}^{A}-space and let x belong to X. If $x \notin d X$, then $\{x\}$ is open and so $d\{x\}$ is closed, and if $x \in d X$, then $d\{x\}$ is closed. Therefore (X, τ) is T_{D}.

Proposition 4.5. A topological space (X, τ) is $T_{U D}$ iff it is $T_{U H}^{A}$.
Proof. It is immediate that $T_{U D} \subseteq T_{U H}^{A}$.
Let (X, τ) be a $T_{U H}^{A}$ and let x belong to X. If $x \notin d X$, then $\{x\}$ is open and so $d\{x\}$ is closed, and if $x \in d X$, then $d\{x\}$ is a union of disjoint closed sets. Hence, (X, τ) is $T_{U D}$.
Proposition 4.6. A topological space (X, τ) is T_{0} iff it is T_{0}^{A}.
Proof. See [6].
Remark 4.7. The only spaces for which $T_{\alpha}^{A}=T_{\alpha}$ are for $\alpha=D$ and $\alpha=0$. In the other cases, $T_{\alpha}^{A} \subseteq T_{\alpha}$, as it is shown in the following.

In all the examples, X is the set of real numbers and it is understood that the null set and the set X are closed.
Example 4.8. Let the sets $\{x\}(x \geq 0),\{-x, x\}(x>0),[-x, x](x>0)$ and their finite unions, be closed. This space is $T_{F D}$ but it is not $T_{F D}^{A}=$ T_{F}^{A}. (Take the subset $[-1,1]$).
4.9. The space of example (3.7) is $T_{H G}$ but it is not $T_{D}=T_{H G}^{A}=T_{H U D}^{A}$ $=T_{H}^{A}$.
Example 4.10. Let the sets $]-\infty, 0],] 0,+\infty[,\{x\}(x \neq 0 ; x \neq 1)$ and their finite unions, be closed. This space is T_{G} but it is not T_{I}^{A}. (Take the subset] $-\infty, 0] \cup\{1\}$).

Example 4.11. Let the sets $\{x\}(0<x \leq 1),\{-x, x\}(0<x \leq 1),] x, 1]$ $(x \leq-1),[x, 1](x \leq-1),] 0, x[(x>1)] 0, x],(x \geq 1)$ and their finite unions, be closed. This space $T_{U D}$ but it is not $T_{U D}^{A}$. (Take the subset $\{0\} \cup[1,2])$.
4.12. The space of example (3.9) is $T_{K U H}$ but it is not $T_{U D}=T_{U H}^{A}$.

Example 4.13. Let the sets $\{x\}(x<-1)(0<x \leq 1),\{-x, x\}(0<$ $x \leq 1),[-1,1],[2,4],] 0, x[(1<x<2)(4<x)] 0, x],(1 \leq x<2)(4 \leq x)$, $\{3, x\}(2 \leq x<4)$ and their finite unions, be closed. This space is $T_{K J}$ but it is not $T_{U I}^{A}$. (Take the subset $\{0\} \cup[1,4]$).

References

[1] Aull, C.E. and Thron, W.J., Separation axioms between T_{0} and T_{1}, Indag. Math. 24(1962) 26-37.
[2] Dunham, W., $T_{\frac{1}{2}}$-spaces, Kyungpook Math. J. 17(1977) 161-169.
[3] Jah, M.N., Separation axioms between T_{0} and T_{1}, Progr. Math. (Allahabad) 11(1977) 1-4.
[4] Levine, N., Generalized closed sets in Topology, Rendiconti Circ. Mat. Palermo 19(1970) 89-96.
[5] McSherry, D.M.G., On separation axioms weaker than T_{1}, Proc. R.I.A. 74 B(1974) 115-118.
[6] Segura, I., Lledó, R. and Guia, J., New characterizations of T_{0}-spaces, Submitted for publication.

Department of algebra, University of Valencia, Burjassot (Valencia), Spain

