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TRANSFORMATIONS FOR A FAMILY OF
LIOUVILLE EQUATIONS

M. F. El-Sabbagh and A. H. Khater

1. Introduction

For partial differential equations (pde), the painleve’ property is de—
fined to mean that the solution of a given pde can be represented locally
as a single-valued expansion about its movable singular manifold, [1-3,
10]. That is if v = u(z,---,z,) is a solution of the pde then we can
write u = % Z;‘;Dujrﬁj, where ¢ = ¢(z1,---,2,) 1s analytic function
for which &(z,-++,2,) = 0 defines the singular manifold of the pde.
The u; = uj(z,- -, z,) are certain analytic functions of the independent
variables z;, 29, -+, z, of the pde.

For the painleve’ property to be satisfied we require a to be negative
integer to make the expansion single-valued. Also we require the expan—
sion u to be self consistent solution to the given pde with the requisite
number of arbitrary functions which ¢ itself can be one of them. The
powers of ¢ at which these arbitrary functions arise are called resonances.

In fact the painleve’ property has shown great importance as its sat-
isfication may provide a simple criterion for complete and partial in-
tegrability of pde as well as Backlund transformations and Lax pairs,
(2,4,11].

The Liouvill’s equation has emerged recently in current research in
studying the phenomena of non-linear MHD equilibrium and its appli-
cations in astrophysics and plasma physics (e.g. flare models and fusion
reactor models) [14-17]. However we shall give a detailed analysis in
MHD approximation in a forth comming paper [18].
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In this paper, we show that a general family of Liouville equations
are of Painleve’ type and construct a family of Backlund transformations
of these equations.

2. Liouville Equations and The Painleve’ Property
A family of Liouville equations is given by
Upr + Uy = ae™ (2.1)

where a and b are constant parameters. To apply the painleve’ analysis
to this family of equations, we first make the following transformation
so that we can handle the equations:

V =e (2.2)
Then (2.1) becomes
VVie + VVi — (V2)! = (Vo)* = abV? (2.3)
Now, let
V=¢ f;w (2.4)
e

where V;,j = 0,1,--- and ¢ are functions of z and ¢, the independent
variables in our case. Then applying (2.4) into (2.3) and by the leading

order term analysis, we get a = —2 and
2
Vo = — (% + 4}) (2.5)
Therefore
V=423 Ve (2.6)
7=0

Applying (2.6) in (2.3) we get the recursion relation

J J
Y Vicm(Cn+ D) = Y (Aj-mAm + Bj—mBm) (2.7)

m=0 m=0

¥ m
+ab Z Z ‘/j—mvm—kvk

m=0 k=0
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where

A = Visiz+( —2)Vié:
B; = Viae+( —2)V;é,
Ci = Vicaas+2( —3)WVjmra0:+ (5 —2)(j —3)V;62  (2.8)
+(j = 3)V;_10z¢
D; = Viau+2( —3)V; lt¢¢+(]_2) V¢t
+(j = 3)Vi-16u

Now for different values of j and from eqn. (2.7) we get the following
results:

2
For j=0, Vo= ;5(¢i+¢3)

Which may be taken in the form

2 d
Vo= 2(dene +65r)8 (2:9)
For j =1
b(«pr s + ¢‘at )log (2 + ¢f — —) (2.10)
For j = 2, we see that V; is arbitrary and have the condition ¥ = 0,
where

U = —Vi[-4Ve¢: + 2Vi 92 — 2Vodor — 4Vordhy + 2Vi 67
+2%¢u - 306%] - %[‘/D,z: s -)-I/l._r@bz - Viérr (211)

+V;3.!l = 21/1,t¢t = v'i¢tt ¥ 4¢1‘vrl,z . 41/1.!¢t
—8Vo4; — 8Vodi] = 0

For j = 3, we have

Va(Co + Do) + VA(C1 + Dy) + Vo(Ca + D) = (2.12)
24041 + 2A% + 2By B, + 2B? 4 3ab(V2Va + VoVi2)

Also for j = 4, we have

Va(Cy + D) + Vi(C3 + D3) + Vo(Vaor + Vo) =
2Va:(Vor — Vidz) + 2V (Vo — Vide) (2.13)
+Vi + Vi + ab(VoVy' + 3V/'V))
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Provided V3 = 0,V; = 0. Also for j = 5, we are lead to

W22z + ViVou — 2V Vo — 2V1,4 Vo, (2.14)
= 2abV V;

With V5 = 0. Lastly for j = 6, we get
VaVaar + VaVauu — V3, — V3 = abVy (2.15)
and V; = 0 for j > 3. Therefore, we get the painleve’ expansion
V=¢+¢ VitV (2.16)
To obtain the resonance, we solve eqn. (2.7) for V; and get
3G = 3)ViVo(é: + 67) = F(Vio1, Vica, -+~ Vo, 6, 6, 6, ++)

Therefore the resonance occur for j = 0 and j = 3. The case for j = 0,
corresponds to the arbitrary function ¢ itself, and for j = 3, since V3 = 0,
it is satisfied identically and we are lead to eqn. (2.12) again.

Thus the truncated expansion (2.16), we just have for V' proves that
the family of Liouville equations satisfy the Painleve’ property.

3. Integrability and Backlund Transformations

In fact, in Ref. [1,7], it was conjectured that the Painleve’ property is
sufficient for integrability of the pde addmitting it. However, in Ref.[4],
another conjecture was shown and it amounts about the necessity of the
painleve’ property for the integrability sake and not sufficiency. There-
fore the term partial integrability is introduced to denote other addition-
al compatibility conditions that may be added to the satisfication of the
painleve’ property to ensure complete integrability, [3].

Thus, this general family of Liouville equations under consideration
are partially integrable and conditions (2.11)-(2.14) are required for
complete integrability. It is worth mentioning that one may use the
Schwarzian derivative to simplify these compatibility conditions as in
Ref. [2,3] but it is not a straightforward as it contains the Schwarzian
derivatives with respect to both z and t.

To look for Backlund transformations for this family of equations, we
call again equations (2.15) and (2.16), i.e.

V=¢Vo+¢ Vi +V;
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and VoV5 ., + VL’Vz,u o %?x = V22¢ = vaza-
We notice that V' and V, are both solutions of equation (2.3) as
expected, [3] and equation (2.16) may be written as

2(¢42 + ¢7) 1
abg?® ab(¢2 + ¢} — 2)
+20¢,:0102 + 45;2‘351:] +V;

Vv (62 62z

Or simply

d b
(% —+ b1y )log¢(¢§+é3—%)+v2 (3.1)

Equation (3.1) gives a family of Backlund transformations for eqn. (2.3).
Now, with bu = InV and bu, = InV; eqn. (3.1) becomes

M= (bt dig)log 8B+ - D)2 (32)

Where u and u, are both solutions of eqns. (2.1) while u, and ¢ satisfy
the compatibility conditions (2.11)-(2.14).

As a matter of fact a Backlund transformation for the Liouville equa—
tion, with @ = 1,b = 2 was obtained in Ref. [13] by a different approach.
Also for the equation u,, = €* in Ref. [12] by a similar way using the
Painleve’ analysis.

It is worth mentioning that eqn. (3.2) may give auto-Béacklund trans—
formations, [11] as well as ordinary Bécklund transformations as shown
for the eqn. u,; = €* in Ref. [12].

We think that the compatibility conditions, eqns. (2.12)-(2.14), are
not just to provide complete integrability but also one may use them to
classify some classes of pde as they have some kind of relation with the
Backlund transformations. This problem in general is a topic for study.
Now and will be completed and shown elsewhere.
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