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ISOMETRIES OF AlgL,

Young Soo Jo and Taeg Young Choi

1. Introduction

The study of non-self-adjoint operator algebras on Hilbert space was
only beginned by W.B. Arveson (1) in 1974. Recently, such algebras
have been found to be of use in physics, in electrical engineering, and
in general systems theory. Of particular interest to mathematicians are
reflexive algebras with commutative lattices of invariant subspaces. The
algebras AlgL, are important classes of such algebras. These algebras
possess many surprising properties related to isometries, isomorphisms,
cohomology and extreme points. In this paper, we shall investigate the
isometric maps of these algebras.

First we will introduce the terminologies which are used in this paper.
Let H be a complex Hilbert space and let A be a subset of B(H), the
class of all bounded operators acting on H. If A is a vector space over
C and if A is closed under the composition of maps, then A is called
an algebra. A is called a self-adjoint algebra provided A* is in A for
every A in A. Otherwise A is called a non-self-adjoint algebra. A linear
map @ of one algebra A; into another algebra A, is an isometry if it
preserves norm. If £ is a lattice of orthogonal projections acting on H,
AlgL denotes the algebra of all bounded operators acting on H that
leave invariant every orthogonal projection in £. A subspace lattice
L is a strongly closed lattice of orthogonal projections acting on H,
containing O and I. Dually, if A is a subalgebra of B(H), then LatA is
the lattice of all orthogonal projections invariant for each operator in A.
An algebra A is reflexive if A = AlgLat A and a lattice L is reflexive if £ =
LatAlgL. A lattice £ is a commutative subspace lattice, or CSL, if each
pair of projections in £ commutes; AlgL is then called a CSL-algebra.
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If ©1,29,-+,%, are vectors in some Hilbert space, then [z;,z9,- -, z,]
means the closed subspace generated by the vectors z,,29--, z,.

2. Isometries of AlgLy, and AlgLy,.

Let Lo, (or La,41) be the subspace lattice of orthogonal projections
generated by {[Cl]s [63], =y [6211—1]1 [ex, 62,83]1 [es, €4, 65]’ T [ezn—a, €2n—2,
€an-1], [€2n-1,€2:]} (or {[e1], [€2i41]; [€2i-1, €205 €2i41]) : 2 =1,2,--+,n}) and
let Ay, (or Az,s1) be the algebra considering of all bounded operators
acting on 2n(or 2n + 1)-dimensional complex Hilbert space H of the
form

~ - -
* ok (**
* *
¥ & * % %k
* *
(or ;
* * -
*
* **J

where all non—starred entries are zero, with an orthonormal basis {e,, e,
v-- e} (or {e1,€2, --+,€2,41}). Then the lattices Ly, and L,y are
commutative and reflexive. The algebras A, and A;,,, are reflexive.
Also we have AlgL,, = Aj, and AlgLy, 41 = Azn41(9).

Let : and j be positive integers. Then E;; is the matrix whose
(7,j )—component is 1 and all other components are zero. Let x and
y be two nonzero vectors in a Hilbert space H. Then z* ® y is a rank
one operator defined by 2* ® y(h) = (h,2)y for all h in H.

Lemma 2.1 [12]. Let £ be a commutative lattice and let  and y be
two vectors. Then z* @y 1s in AlgL if and only if there exists E in L
such thaty in E and z in EL, where

E_=V{F:Fisinfand F ? E} and E! =(E_)*.

Let ¢ : AlgL,, — AlgLs, (or AlgLynyyr — AlgLantq) be a surjective
isometry. Then we have the following lemmas.

Lemma 2.2 [13]. Let I be the identity operator, let o(I) = A, and let
E be a projection in Ly, whose rank s at least two. Then |Az|| = |[z||
for all z in E+X.
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Lemma 2.3 [13]. Ifp(I) = A and if 2* @z is AlgLy,, then ||Az|| = ||z|.

Theorem 2.4. If p: AlgL,y, — AlgL,, (or AlgLoynyq — AlgLony) 18 a
surjective 1sometry, then o(I) 1s a unitary diagonal operator in AlgL,,
(or AlgLant1 ).

Proof. Let o(I) = A = (a;;) be in AlgL,,. Since €] @ e; is in AlgL,,

for each i = 1,2,--+,2n, |a;| = 1 for each odd number i. Since ||A| =
IlZ]| = 1, we have

a2 =0,a3 = as; =0, -+ ,an_12n-2 = Q2122 = 0.
Hence p(I) = A is a diagonal matrix and |a;;| = 1foreachi =1,2,---,2n

(or 2n +1). So A = p(I) is a unitary diagonal operator in AlgL,, (or
A19L2n+1)-

Let o(I) = U. Then UA and U*A are in AlgL,, (or AlgLsniq)
for all A in AlgL;, (or AlgLy,yq). Define ¢ : Algy, — AlgL,, (or
AlgLgnyy — AlgLony,) by G(A) = U*p(A) for every A in AlgL,, (or
AlgLan41). Then ¢ is a surjective isometry and @(I) = I. Let M be
the smallest von Neumann algebra containing Ly, (or Lin4;). Then
M = (AlgLy,) N (AlgLy,)™ (or M = (AlgLyyiq) N (AlgLangq)”), where
(AlgL)* = {A*: A is in AlgL} for any subspace lattice L.

Lemma 2.5 [11]. Let U; and Uy be C*-algebras and let ¢ : Uy — U,
be a linear map which carries the identity in U; into the identity in U,
and ||¢(A)|| = ||A|| for all normal operators A in U,. Then p preserves
adjoints, i.e, p(A*) = p(A))* for all A i U,.

Definition 2.6 [9]. Let U; and U, be C*-algebras. A Jordan isomor-
phism or C*-isomorphism ¢ : U; — U, is a bijective linear map such
that @(A") = (@(A))" for all A in U, and p(A) = (¢(A))* whenever A
is self-adjoint in U;.

Lemma 2.7 [11]. (1) A linear bijection @ of one C*-algebra U,
onto another U, which is isometric 1s a C*-1somorphism followed by left
multiplication by a fized unitary operator, viz, @(I).

(2) A C*-isomorphism ¢ of a C*-algebra U, onto a C*-algebra U, 1s
1sometric and preserves commutativity.

Lemma 2.8. Let @ : AlgLy, — AlgL,, (or AlgLypyy — AlgLynyy) be a

surjective 1sometry defined by G(A) = U*p(A) for all A in AlgL,, (or
AlgLonyr ), where U = p(I). Then g(M) = M.
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Proof. Since M is C*-algebra, ¢(I) = I and @ is an isometry, we have
| mpreserves adjoints by Lemma 2.5. If (A) is in ¢(M), then A isin M
and so A* is in M. Hence ¢(A*) = (¢(A))* isin ¢(M) and hence g(M) is
self-adjoint. Thus (M) C M. Since @|pm: M — M is an injective linear
map and M is a finite dimensional vector space, we have @[y : M — M
is onto. Hence g(M) = M.

Corollary 2.9. If ¢ : AlgL,, — AlgLy, (or AlgLnsy — AlgLyny,) s
a surjective isometry such that p(I) = I, then (M) = M.

Lemma 2.10. Let ¢ : AlgLy, — AlgLy, (or AlgLypyy — AlgLany) be
a surjective isometry such that o(I) = I, Then E is a projection in M
iof and only 1f o(E) s a projection in M.

Proof. Suppose that E is a projection in M. Since ¢|p is a Jordan
isomorphism, @(E) = ¢(E*) = ¢(E)* and ¢(E) = ¢(E?) = ¢(E)% So
@(E) is a projection in M because o(M) = M. Conversely, suppose that
©(E) is a projection in M. Then since ¢~ '|pis a Jordan isomorphism,
¢t o@(F) = E is a projection in M.

Lemma 2.11 [11]. Let U, and Uy be C*-algebras and ¢ : Uy — Uz a
C*-isomorphism. Then o(BAB) = ¢(B)p(A)p(B) for all A, B in U,.

Let E and F' be orthogonal projections acting on a Hilbert space H.
Then the partial order relation < is described as follows ;

E<F ifandonlyif EF=FFE=E.

Theorem 2.12. Let ¢ : AlgLy, — AlgL,, (or AlgLanyy — AlgLany)

be a surjective 1sometry such that p(I) = I. Then p([e;]) is a rank one

operator for all: =1,2,--- 2n (or1=1,2,---,2n+1).

Proof. For given k = 1,2,--+.2n (or k = 1,2,---,2n + 1), [ex] is a

projection in M. By Lemma 2.10, ¢([ex]) is a projection in M. Let
E be a non-zero projection in M such that E < ¢([ex]). Then there
exists F' in M such that ¢(F) = E and F is a projection by Lemma
2.10. Since Fley] = [ex]F and ¢|p: M — M is an isometry such that
o(I) = I, it follows by Lemma 2.7, o(F)p([ex]) = ¢([ex])p(F). Since

Fle] = [ex]Flesl, @(Flea]) = o([exlFles]) = elieslo(F)p(les]). Hence

o(Flex]) = ¢(F)¢([ex]). Since Eg([es]) = E, we have

@©(F) = E = Ep([ex]) = o(F)¢([ex]) = ¢(Fex]).
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So F = Flex] because ¢ is an injection. Thus F < [ex]. Since ||E| =
()l = IF|l # 0. F = [ex]. So E = @(F) = ¢([ex]). that is, ¢([ex])

is a minimal projection in M. Thus ¢([ex]) is a rank one operator for all
k=1,2,:++,2n (resp. k=1,2,::-,2n+1).

Lemma 2.13 [8]. Let R be an operator and suppose that there is a
non-negative number M and a positive number N such that |R+ol||? <
M? + |a|* for all @ in C with |a| > N. Then R = 0.

Lemma 2.14 [13]. Lety : AlgL,, — AlgLy, (or AlgLs, 1 — AlgLyny,)
be a surjective isometry such that o(I) = I, and let P be a projection
in M and let T be in AlgLy, (or AlgLynyy) with T = PTP*. Then

@(T) = ¢(P)p(T)p(P)* + o(P) o(T)p(P).

Theorem 2.15 [8]. Let ¢ : AlgL, — AlgL, be a surjective isometry
such that o(I) = I and ¢(E;) = E;; for t = 1,2. Then there exists a
unitary operator U such that o(I) = UAU* for every A in AlgL,.

Theorem 2.16. Let ¢ : AlgL,, — AlgL,, be a surjective isometry such
that ‘P(I) = I an‘d (P(En) = Ekk) {P(EJJ) = Emm fO'."' 2,] = ]-s 21 ,27’1.
Ifli — j| =1, then |k —m| = 1.
Proof. Let i =2r—1and j = 2rforr =1,2,---,n. Then E;. 5. E3,_1,2:Ear 2
= E?r—1,2r a-nd

E2r—1.2r—lE2r—l.2rE‘§;_1_2r—1 = EZr—l.?r-
From Lemma 2.14

‘P(Ezr-mr) == Erﬁm‘P(Ezr—l.zr)Emm + Emmso(E2r-l.2r)ErJr:m and
(*) ©(Ear-13r) = Exxo(E2r-12:)Els + Eio(Ear-12¢)Exk

So we can get the following from the second equation of (*);

(1) If k is 1, then @(E;,—12,) is a matrix all of whose entries are zero
except for the (1,2)-component.

(2) If k is an odd number and k # 1, then ¢(E2-—;2,) is a matrix all of
whose entries are zero except for the (k, k — 1)-component and the
(k, k 4+ 1)-component.

(3) If k is an even number and k # 2n, then ¢(E;,_;5,) is a matrix all
of whose entries are zero except for the (k — 1, k)-component and
the (k + 1, k)-component.
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(4) If k is 2n, then ¢(E,,_; 2,) is a matrix all of whose entries are zero
except for the (2n — 1, 2n)-component.

From the first equation of (%) we have the following;

(a) If m is 1, then ¢(Ej,—2,) is a matrix all of whose entries are zero
except for the (1,2)-component.

(b) If m is an odd number and m # 1, then ¢(E3,_;2,) 1s a matrix all
of whose entries are zero except for the (m,m—1)- component and
the (m,m + 1)-component.

(c) If m is an even number and m # 2n, then @(E,,_;2,) is a matrix
all of whose entries are zero except for the (m — 1, m)-component
and the (m + 1, m)-component.

(d) If m is 2n, then ¢(Es,_;9,) is a matrix all of whose entries are zero
except for the (2n — 1,2n)-component

Then the following cannot happen at the same time:
(1) and (a) because k # m.

(1) and (b) because k =1 and m > 3.

(1) and (d) because k = 1 and m = 2n(n > 1)
(2) and (a) because k > 3 and m = 1.

(2) and (b) because k # m.

(3) and (c) because k # m.

(3) and (d) because k < 2(n — 1) and m = 2n.
(4) and (c) because k = 2n and m < 2(n —1).
(4) and (d) because k # m.

Then the following can happen at the same time;

(1) and (¢) if k = 1 and m = 2. In this case, ¢(E,,—12-) is a matrix
all of whose entries are zero except for the (1,2)-component.

(2) and (c) if |k — m| = 1. In this case, ¢(E;,_;2,) is a matrix all of
whose entries are zero except for either the (k, k¥ — 1) component or the
(k, k + 1)-component.

(2) and (d) if k = 2n — 1 and m = 2n. In this case, @(Es—12) is a
matrix all of whose entries are zero except for the (2n—1, 2n)-component.

(3) and (a) if ¥k = 2 and m = 1. In this case, @(E;,_12,) is a matrix
all of whose entries are zero except for the (1,2)-component.
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(3) and (b) if |k — m| = 1. In this case, @(E;,_ 2,) is a matrix all of
whose entries are zero except for either the (k — 1, k)-component or the
(k + 1, k)—component.

(4) and (b) if ¥ = 2n and m = 2n — 1. In this case, ¢(E3,_12,) is a
matrix all of whose entries are zero except for the (2n—1, 2n)-component.
So we can get the result of the theorem.

With the same proof as Theorem 2.16, we can get the following the-
orem.

Theorem 2.17. Let ¢ : AlgLo,y — AlgLy,iq be a surjective isometry
such that o(I) = I and ¢(E;) = Ex and p(E;;) = Epm for all i, =
1,2,---.2n+1. If|i—j| =1, then |k —m| = 1.

From Theorems 2.16 and 2.17 we can get the following corollarys.

Corollary 2.18. Let ¢ : AlgLy, — AlgLy, (or AlgLyyyy — AlgLonyq)
be a surjective isometry such that o(I) = I. Then o(E; _12,) and
@(Ears1,2-) have the form

- - -

0 0

or ,

0 i ’oj

where all non—starred entries are zero.

Corollary 2.19. Let ¢ : AlgL,, — AlgL,, (or AlgLy, iy — AlgLonyq)
be a surjective 1sometry such that p(I) = I. Then either o(Ey;) = En
or ¢(En) = Egnan. (resp. either (E1) = Eyy or ¢(En) = Eang1,2n41)-
Corollary 2.20. Let ¢ : AlgL,, — AlgL,, (or AlgLy,4y — AlgLynyy)
be a surjective isometry and ¢(E;;) = Ey; for each i = 1,2,---,2n (resp.
t=1,2,---,2n +1). Then there exists a complex number a;; such that
(,O(E,'j) = Q,’_,‘E.'j for each E;J- n Alngn ('re.sp. AIgL2n+1).

Deﬁne J : CZn =% C2n by J((Ilaw% e 13:211)‘:) = (52113 i?n—ls Lo 1'{'1)a
for every (zy, 23, -, T2)" in C?*. Then J is a conjugation ; that is,
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(1) J is a bijection.

(2) J(z +y) = Jz + Jy for all z,y in C*".

(3) J(az) = aJz for every a in C and every z in C*".

4) J2=1I.

(5) (Jz,y) = (Jy,z) for z,y in C**

(6) (Jz,Jy) = (y,z).

Define ¢, : AlgL,, — AlgL,, by ¢1(A) = JA*J. Then ¢, is a
surjective isometry and ¢;(I) = I. From these facts, we get the following
Lemma.

Lemma 2.21. Let ¢ : AlgLy, — AlgL,, be a surjective 1sometry such
that o(I) = I and p(E;,) = Enon. Then @ = py0¢: AlgL,, — AlgL,,
18 a surjective wsometry such that 3(E,y) = Eyy and §(I) = 1.

Proof. Let ¢ = ; o for the above ;. Then @ is a surjective isometry
and @y 0 @(I) = I and ¢, 0 p(Eyy) = @1(Eanzn) = J Egnond = Eyy.

Theorem 2.22. Let ¢ : AlgLy, — AlgL,, be a surjective isometry such
that o(I) = I and o(Ey;) = Ey. Then there exists a unitary operator
V' such that o(A) = VAV* for all A in AlgL,,.

Proof. From Theorem 2.16 ¢(E;;) = Ey; for all i = 1,2,.--,2n. From
Corollary 2.20 ¢(E;;) = ay;E;; for all E;; in AlgL,, and some com-
plex number a;;. Since ¢ is an isometry, ||@(E;;)|| = |lai; Ell = || Bl
and so |a;j| = 1 for all 7,5 such that E;; in AlgL;,. Let A = (ai;)
be in AlgL,;, and let V be a 2n by 2n diagonal matrix with €% the
(k,k)-component for all k(k = 1,2,---,2n). Then VAV* is the 2n
by 2n matrix with a;; the (7,7)-component for all :(z = 1,2,---,2n),
agj—1,2i€" %% -17%) the (2j — 1,2j)-component for all j(j = 1,2,---,n),
agks1,2k€ P%+1 ~02) the (2k+1, 2k)—component for all k(k = 1,2,---,n—1)
and 0 the other components. So the theorem will be proved if we can

determine %1, "2, ... e'%n satisfying the following relations;
i(81 -0
el?1-02) — o,
i(03—0
e'(03—02) Qsz
i (63—04) Qag

1(02p—1—02n—-2
fP-10-3) = 6, y04-2

(202,18
6( 2-1=02n) Q2p—1,2n
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The equation can be solved recursively (6; may be set equal to 0).

From Lemma 2.21 if ¢ : AlgL,, — AlgL,, is a surjective isometry
such that ¢(I) = I and ¢(E;1) = Ej, 24, then there exists a unitary
operator V such that ¢, o p(A) = VAV* for all A in AlgL,,, where
@1 ¢ AlgL,, — AlgL,, is a surjective isometry defined by ¢(A) = JA*J.
Hence ¢, 0 p(A) = VAV* = J(p(A))*J, and so JVAV*J = (p(A))".
Since (JAJ)* = JA*J for all A in AlgL,,, we have p(A) = JVA*V*J.

Lemma 2.23. Let ¢ : AlgLypyy — AlgLynyy be a surjective 1sometry
such that o(I) = I and ¢(E1) = Eng12n4+1- Then there exists a sur-
jective 1sometry ¢y @ AlgLoynyy — AlgLonyq such that po(I) = I and
w20 @(Ey) = Eqy.

Proof. Let U be a 2n + 1 by 2n 4+ 1 matrix whose (k,2n — k + 2)-
component is 1 for k = 1,2,---,2n + 1, and all other entries are zero.
Define ¢, : AlgLynyy — AlgLgnyy by @o(A) = UAU. Then ¢, is a
surjective isometry, (1) = I and @, 0@(E};) = @2( Eang1.0n41) = Enr.

With the same proof as Theorem 2.22, we can get the following the-
orem.

Theorem 2.24. Let ¢ : AlgLynyy — AlgLanyq be a surjective isometry
such that o(I) = I and @(Ey ) = E, . Then there ezists a unitary
operator V' such that ¢(A) = VAV™ for all A in AlgLqpy,.

From Theorems 2.23 and 2.24 we can get the following Theorem.

Theorem 2.25. Let ¢ : AlgLy,py — AlgLg,yq be a surjective isometry
such that o(I) = I and p(Ey1) = Eang12n+1- Then there 1s a unitary
operator W such that p(A) = WAW™ for all A in AlgLy, 4.

Now by stating a Jo's result we will close this paper. Let L., be the
lattice generatEd by {[521‘—1]1 [62,‘_1,82.‘,62,‘4.1]: 3 = ],1 ‘_).," } a.nd let A,x,
be the algebra consisting of all bounded operators acting on separable
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infinite dimensional Hilbert space of the form

[« 1

* ¥ *

where all non-starred entries are zero, with an orthonormal basis {e;, ey, -}.
Then A, is a reflexive algebra and AlgL,, = A..

Theorem 2.26 [8]. Let ¢ : AlgLo, — AlgLs, be a surjective isometry
such that o(I) = I. Then there ezists a unitary operator V such that
p(A) = VAV™ for all A in AlgL,,.
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