HADAMARD PRODUCTS OF BLOCH FUNCTIONS AND ITS DUAL SPACES

Yong Cho and Yong Chan Kim

1. Introduction

A function f analytic in the unit disk is said to be of class H^p (0 < $p < \infty$) if

$$M_p(r,f) = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta\right)^{\frac{1}{p}}, \quad 0$$

remains bounded as $r \to 1$.

The class G^p is defined by $f \in G^p$ if and only if $\int_0^1 M_1(r, f')^p dr < \infty$. We shall denote by \mathcal{B} the space consisting of all analytic functions f such that $\sup_{0 \le r \le 1} (1-r)|f'(z)| \le \infty (r = |z|)$. These functions are called the *Bloch functions*. It is well known that G^1 is the dual space of Bloch functions and $G^1 \subset H^1$.

The Hadamard product of two power series $f(z) = \sum_{0}^{\infty} a_n z^n$ and $g(z) = \sum_{0}^{\infty} b_n z^n$ is defined as the power series

$$(f * g)(z) = \sum_{0}^{\infty} a_n b_n z^n.$$

Let A, B and C be spaces of analytic functions. A complex sequence $\{\lambda_n\}$ is called a multiplier of A into B if $\sum_{0}^{\infty} a_n z^n \in A$ implies $\sum_{0}^{\infty} \lambda_n a_n z^n \in B$. We denote by (A, B) the space of *multipliers* from A to B. A space of analytic functions can be regarded as a sequence space by identifying each function with its sequence of Taylor coefficients. Then we are easy to see that $C \subset (A, B)$ if and only if $C * A \subset B$.

In this paper, we have the following results.

(1) $\mathcal{B} * \mathcal{B} \subset \mathcal{B}$

This research was partially supported by KOSEF.

(2) $(H^1, \ell(q, 2)) = \ell(q, \infty)$ if $q \ge 1$. (3) $G^p * G^1 \subset G^p$. (4) $H^2 * H^1 \subset G^1$.

2. Definitions and notations

Definition 2.1. For $1 \leq \alpha, \beta \leq \infty$ we denote by $\ell(\alpha, \beta)$ the set of those sequences $\{a_k\}(k \geq 1)$ for which

$$\{(\sum_{I_n} |a_k|^{\alpha})^{\frac{1}{\alpha}}\}_{n=0}^{\infty} \in \ell^{\beta} \quad (\alpha < \infty)$$

and

$$\{\sup_{k\in I_n}|a_k|\}_{n=0}^\infty\in\ell^\beta\quad(\alpha=\infty)$$

where $I_n = \{k : 2^n \le k < 2^{n+1}\}.$

See C.N. Kellogg [5] for further information on them. We remark that $\ell(p, p) = \ell^p$.

Definition 2.2. A sequence space A is said to be *solid* if, whenever it contains $\{a_n\}$ it also contains $\{b_n\}$ with $|b_n| \leq |a_n|$. We denote the largest solid subspace of A by s(A).

3. Results

Theorem 3.1. For $q \ge 1$, $(H^1, \ell(q, 2)) = \ell(q, \infty)$.

Proof. By the result of Paley on the gap series of H^1 functions, we have $H^1 \subset \ell(\infty, 2)$. Thus

$$(H^1, \ell(q, 2)) \supset (\ell(\infty, 2), \ell(q, 2)) = \ell(q, \infty).$$

The Köthe dual, denote by $(A)^{K}$, is defined to be (A, ℓ^{1}) , the multipliers from A to ℓ^{1} . From Theorem 3.12 ([6]) we have $(G^{1})^{KK} = \ell(\infty, 1)$. Since $G^{1} \subset H^{1}$,

$$\begin{aligned} (H^1, \ell(q, 2)) \subset (G^1, \ell(q, 2)) &= ((G^1)^{KK}, \ell(q, 2)) \\ &= (\ell(\infty, 1), \ell(q, 2)) \\ &= \ell(q, \infty), \end{aligned}$$

where we used Lemma 4 of [1].

8

Hadamard Products of Bloch Functions and Its Dual Spaces

Corollary 3.2. $\mathcal{B} * H^1 \subset H^2$.

Proof. From Theorem 3.1 we have $(H^1, \ell^2) = \ell(2, \infty)$. Since $\mathcal{B} \subset \ell(2, \infty)$ (see [1]), $\mathcal{B} \subset (H^1, H^2)$. Thus $\mathcal{B} * H^1 \subset H^2$.

Remark. The multipliers $(\ell(\alpha, \beta), \ell(\alpha', \beta'))$ are easily determined, this has been done by Kellogg [5].

Theorem 3.3. $\mathcal{B} * \mathcal{B} \subset \mathcal{B}$.

Proof. In [1], $\ell(1,\infty) \subset B \subset \ell(2,\infty)$. Hence $(\ell(2,\infty), \mathcal{B}) \subset (\mathcal{B}, \mathcal{B})$. From Lemma 3 ([1]) we have

$$(\ell(2,\infty),\mathcal{B}) = (\ell(2,\infty), s(\mathcal{B}))$$
$$= (\ell(2,\infty), \ell(1,\infty))$$
$$= \ell(2,\infty).$$

Since $B \subset \ell(2,\infty), \mathcal{B} \subset (\mathcal{B},\mathcal{B})$. Therefore the space \mathcal{B} is closed under Hadamard product.

Theorem 3.4. $G^{p} * G^{1} \subset G^{p} (0 .$

Proof. Let $f(z) = \sum_{0}^{\infty} a_n z^n$ be in G^p , let $g(z) = \sum_{0}^{\infty} b_n z^n$ be in G^1 , and let $h(z) = (f * g)(z) = \sum_{0}^{\infty} a_n b_n z^n$. Then

$$h(\rho_z) = (2\pi)^{-1} \int_0^{2\pi} f(\rho e^{it}) g(z e^{-it}) dt. \quad 0 < \rho < 1.$$

Differentiation with respect to z gives

$$\rho h'(\rho z) = (2\pi)^{-1} \int_0^{2\pi} f(\rho e^{it}) g'(z e^{-it}) e^{-it} dt.$$

Hence $\rho M_1(r\rho, h') \leq M_1(r, g') M_1(\rho, f)$. Since $g \in G^1, M_1(r, g') = O(1-r)^{-1}$. Taking $r = \rho$,

$$M_1(r^2, h')^p \leq const.(1-r)^{-p}M_1(r, f)^p.$$

Since $f \in G^P$, $\int_0^1 M_1(r, f')^p dr < \infty$. By the theorem of Hardy and Littlewood on fractional integrals ([4]) we know that $\int_0^1 (1-r)^{-p} M_1(r, f)^p dr < \infty$ ∞ if and only if $\int_0^1 M_1(r, f')^p dr < \infty$. Hence $\int_0^1 M_1(r, h')^p dr < \infty$. Thus $h \in G^p$.

Remark. G^1 is the dual space of Bloch functions. Hence the dual space of Bloch functions is closed under the Hadamard product.

Theorem 3.5. $\ell^2 \subset (H^1, G^1) \subset \ell(\infty, 2)$

Proof. By Lemma 6 and Lemma 9 of [1], $s(G^1) = \ell(2, 1)$. From Lemma 3 ([1]) and Lemma 4.5 ([6]) we have

$$(H^1, G^1) \subset (s(H^1), G^1) = (\ell^2, G^1) = (\ell^2, s(G^1)) = (\ell^2, \ell(2, 1)) \vdots \ \ell(\infty, 2).$$

Since $H^1 \subset \ell(\infty, 2)$,

$$(H^1, G^1) \supset (\ell(\infty, 2), G^1) = (\ell(\infty, 2), s(G^1)) = (\ell(\infty, 2), \ell(2, 1)) = \ell(2, 2) = \ell^2.$$

Corollary 3.6. $H^2 * H^1 \subset G^1$

Remark. In [1], $\ell(1,\infty) = s(\mathcal{B}) \subset \mathcal{B} \subset \ell(2,\infty)$. By the similar method of Theorem 3.5, $(\mathcal{B}, G^1) = \ell(\infty, 1)$. Since $\ell(2,1) \subset G^1 \subset \ell(\infty, 1)$ (see [1] p.263), $G^1 \subset (\mathcal{B}, G^1)$. Hence $\mathcal{B} * G^1 \subset G^1$.

References

- J.M. Anderson and A.L. Shields, Coefficient multipliers of Bloch functions, Trans. Amer. Math. Soc. 224(1976), 255-265.
- [2] P.L. Duren, Theory of H^p spaces, Academic Press, New York, 1970.
- P.L. Duren and A.L. Shields, Coefficient multipliers of H^p and B^p spaces, Pacific J. of Math. 32(1970), 69-77.
- [4] G.H. Hardy and J.E. Littlewood, Theorems concerning mean values of analytic or harmonic functions, Quart. J. Math. Oxford Ser. 12(1941), 221-256.
- [5] C.N. Kellogg, An extension of the Hausdorff-Young theorem, Michigan Math. J. 18(1971), 121-127.
- [6] Y.C. Kim, Coefficient multipliers of H^p and G^p spaces, Math. Japonica 30, No. 5 (1985) 671-679.
- [7] A. Zygmund, Trigonometric series, 2nd. Rev. ed., Cambridge Univ. Press, New York, 1959.

DEPARTMENT OF MATHEMATICS, YEUNGNAM UNIVERSITY, GYONGSAN 632, KOREA