STRONGLY SEMIPRIME ALTERNATIVE RINGS WITH $x y^{2} x=y x^{2} y$

Tae-il Suh

Let R be an alternative ring, i.e. a nonassociative ring in which $x^{2} y=x(x y)$ and $y x^{2}=(y x) x$ for all x and y in $R . \quad R$ is said to be strongly semiprime if $x R x=(0)$ implies $x=0$. We wish to establish the following

Theorem. Let R be a strongly semiprime alternative ring. If R satisfies the identity

$$
\begin{equation*}
x y^{2} x=y x^{2} y \tag{1}
\end{equation*}
$$

then R is associative and commutative.
R. Awtar in [1] showed that a semiprime associative ring with $x y^{2} x-$ $y x^{2} y$ central for all its elements x and y is commutative.

Lemma. If R is a strongly semiprime alternative ring with (1), then R has no nilpotent element $\neq 0$.

In the rest of this paper we use freely Artin's theorem and the Moufang identities ([2], pp 35-36).

Proof. Suppose to the contrary that there exist a nilpotent element $a \neq 0$ in R. Let m be the smallest integer ≥ 1 such that $a^{m+1}=0$ but $a^{m} \neq 0$. Then $\left(a^{m}\right)^{2}=0$ and $a^{m} r^{2} a^{m}=0$ for all r of R by (1). It follows that for all r and s of R

$$
\begin{equation*}
\left(a^{m} r\right)\left(s a^{m}\right)+\left(a^{m} s\right)\left(r a^{m}\right)=0 \tag{2}
\end{equation*}
$$

Since $\left(a^{m} r a^{m}\right)\left(a^{m} s a^{m}\right)=a^{m}\left\{r\left[a^{m}\left(a^{m} s a^{m}\right)\right]\right\}=a^{m}\left\{r\left[\left(a^{m}\right)^{2}\left(s a^{m}\right)\right]\right\}=0$, we have $\left(a^{m} R a^{m}\right)^{2}=(0)$. Let $a^{m} r a^{m}$ be an element of $a^{m} R a^{m}$ and set $b=a^{m} r a^{m}$. We note $b^{2}=0$ and show $b R b=(0)$. For any ele -
ment s of $R, b s b=\left(a^{m} r a^{m}\right)\left[s\left(a^{m} r a^{m}\right)\right]=a^{m} \cdot r\left\{a^{m}\left[s\left(a^{m} r a^{m}\right)\right]\right\}=$ $a^{m} \cdot r\left\{\left(a^{m} s a^{m}\right)\left(r a^{m}\right)\right\}=a^{m} \cdot r\left\{-\left(a^{m} r\right)\left[\left(s a^{m}\right) a^{m}\right]\right\}$ by (2). Since the last expression is 0 , we have $b s b=0$. This implies $0=b=a^{m} r a^{m}$. Since r is an arbitary element of $R, a^{m}=0$ which is a contradiction to the way of choosing m.

Proof of Theorem. First let us show that R is commutative. Let a and b be two elements of R and S the subring generated by a and b. By Artin's theorem, S is associative. Since S contains no nilponent element $\neq 0, v S v=(0), v \in S$ implies $v=0 . S$ is now a semiprime associative ring with (1). It follows from the result of R. Awtar [1] that S is commutative. Hence $a b=b a$ and R is commutative. It then follows from Lemma $8([2], \mathrm{p} 142)$ that $(a, b, c)^{2}=0$ for any elements a, b, c in R. By Lemma we have $(a, b, c)=0$ and thus R is associative.

References

[1] R. Awtar, A remark on the commutativity of certain rings, Proc. Amer. Math. Soc. 41(1973), 370-372.
[2] K.A. Zhevlakov, A.M. Slin'ko, I.P. Shestakov, A.I. Shirshov, Rings that are nearly associative, Academic Press, 1982.

East Tennessee State University, Johnson City, TN 37614

